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Differences in Neurodegeneration Between Kainic                  
Acid-Injected GAERS and Wistar Rats

Original Investigation

ABSTRACT

AIM: To compare neurodegenerative changes using the Fluoro-Jade B staining, following status epilepticus induced by intra-
amygdaloid injection of kainic acid in Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and non-epileptic control Wistar 
rats.
MATERIAL and METHODS: A single unilateral intra-amygdaloid kainic acid (750 ng) was administered in adult male GAERS 
and Wistar rats to induce status epilepticus. We recorded electroencephalogram (EEG) and behavioral changes throughout the 
experiments. After 1 week of the kainic acid injection, rats were sacrificed, and the brains were removed. We obtained 20μm 
sections and processed them for Fluoro-Jade B and Nissl staining, which were evaluated semi-quantitatively.
RESULTS: Following kainic acid injections, status epilepticus developed in all rats. In GAERS rats, motor seizures were considerably 
delayed, with no statistically significant difference in the number of seizures. However, statistically significant differences were 
observed in the Fluoro-Jade B staining in GAERS rats between contralateral and ipsilateral sides of the CA3, CA1, somatosensory 
cortex, entorhinal cortex, piriform cortex, reticular nucleus, putamen, and claustrum. In Wistar rats, the CA3, CA1, somatosensory 
cortex, entorhinal cortex, piriform cortex, reticular nucleus, amygdala, and laterodorsal nucleus exhibited significant differences. 
Comparing GAERS and Wistar rats, a statistically significant difference was observed for both sides of CA1. In both groups, the 
staining was prominent ipsilaterally, except for the claustrum in GAERS rats. However, the motor cortex remained unaffected in both 
groups. Neurodegenerative changes were not associated with the severity of seizures in both groups following the intra-amygdaloid 
kainic acid administration.
CONCLUSION: This study demonstrates that CA1 is the only region exhibiting a statistically significant difference between Wistar 
and GAERS rats.
KEYWORDS: Genetic absence epilepsy rats, Flouro-Jade B, Status epilepticus, Amygdala, CA3, Neuroscience, Absence epilepsy, 
Kainic acid, GAERS

█    INTRODUCTION

Absence epilepsy, a form of generalized epilepsy, serves 
as a model for an approach to investigate epilepsies 
(27). However, the underlying mechanisms of absence 

epilepsy and its seizures remain partially defined. One accepted 

model for absence epilepsy is the Genetic Absence Epilepsy 
Rats from Strasbourg (GAERS), a well-validated model of 
absence epilepsy in humans (11,13,24). In GAERS, all animals 
express genetically determined spontaneous spike-and-wave 
discharges (SWDs) on a cortical electroencephalogram (EEG), 
concurrent with behavioral arrest. The highly interconnected 
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circuitry of the cortex and thalamus is known to play a vital 
role in the pathophysiology of absence epilepsy seizures. 
Studies have reported that bilateral SWDs are recorded in the 
frontoparietal and sensorimotor cortex and the posterolateral 
thalamic relay nuclei (11,34). However, it has long been 
considered that limbic structures are not involved in absence 
seizures, as SWDs could not be recorded in the hippocampus 
and amygdala simultaneously with cortical SWDs in GAERS.

One of the enigmatic issues in GAERS is that these rats resist 
or experience a delay of secondary generalization of limbic 
seizures evoked by kindling. In addition, these rats resist or 
express a delayed response to intra-amygdaloid kainic acid–
induced status epilepticus, which is a model of temporal lobe 
epilepsy (1,3,7,16,26). These findings indicate an interaction 
between the limbic circuits triggered by kainic acid–induced 
status epilepticus or kindling and corticothalamic networks 
in GAERS. The administration of intra-amygdaloid kainic 
acid in non-epileptic Wistar rats induces status epilepticus, 
which is defined as a condition in which an uninterrupted 
seizure or several epileptic seizures occur recurrently for 
a minimum period of 1 hour; this period of seizures initially 
results in epileptogenesis followed by a chronic epileptic 
state (9,20,22,28). In Wistar rats, kainic acid–induced status 
epilepticus is typically related to neurodegeneration and cell 
death throughout the brain. In addition, some studies have 
also reported observing selective degeneration of interneurons 
in the hilus of the dentate gyrus (DG) and pyramidal neurons in 
CA1 and CA3 (9,25). Furthermore, the degeneration has also 
been observed in the amygdala, thalamus, olfactory cortex, 
neocortex, and substantia nigra (17,31).

This study aims to ascertain any differences in the neurode-
generative changes between GAERS and non-epileptic Wistar 
rats, following intra-amygdaloid kainic acid–induced status 
epilepticus.

█    MATERIALS and METHODS
We used male adult GAERS and Wistar control rats (>4 months 
old) weighing 250–350 g for the experiments. All animals 
were housed in individual cages in air-conditioned rooms at 
21°C on a 12h light/dark cycle (light out from 08:00 to 20:00) 
with unlimited access to food and water. The protocol of 
experiments was approved by the Marmara University Ethics 
Committee for Experimental Animals (66.2004.Mar.).

The experiment was conducted in six groups as follows: (a) 
naive groups of GAERS and Wistar rats; (b) sham control 
groups of GAERS and Wistar rats; (c) kainic acid–injected 
GAERS and Wistar rats. In the kainic acid–injected groups, 
GAERS (n=7) and Wistar (n=7) rats were anesthetized with 
ketamine [100 mg/kg intraperitoneally (i.p.)] and xylazine [(10 
mg/kg, (i.p.)]. The depth of anesthesia was confirmed with the 
absence of corneal and toe pinch reflexes. Next, the surgical 
area was cleaned with an antiseptic solution, and the hair 
were removed. The head of rats was placed into a stereotaxic 
instrument (Stoelting Model 51600; Stoelting Co., IL). Then, a 
longitudinal incision was made, and the periost was removed 
mechanically, followed by implanting two stainless steel screws 

with isolated wires on the right frontal and parietal cortex and 
free endings of wires soldered to a micro-connector for cortical 
EEG recordings. After that, a guide cannula (C312G; Plastics 
One, Roanoke, VI) was stereotaxically implanted into the right 
basolateral amygdala [coordinates: AP, −2.6 mm; ML,±4.8; V, 
−7.5 mm from the bregma according to the rat brain atlas of 
Paxinos and Watson (1998)]. Finally, the screw electrodes and 
cannula were fixed with cold dental acrylic. Postoperatively, 
rats were given 3mL of isotonic salt solution subcutaneously 
to prevent fluid loss and were allowed to recover for 1 week.

After the recovery period, all rats were placed in Plexiglas 
cages. Using a BioAmp ML 136/PowerLab 8S System 
running Chart v.5 (ADI Instruments, UK), 1 hour baseline EEG 
was recorded before the injection in all experimental groups. 
In addition, EEG was recorded and evaluated in the GAERS 
groups to determine the basal SWD intensity. We defined SWD 
as a characteristic train of sharp asymmetric large-amplitude 
spikes and slow waves lasting at least 1 second (2). We used 
the first and last spikes as the start and end points of the 
SWDs. The cumulative duration and number of basal SWDs 
were analyzed over 1 hour. After that, we placed the internal 
cannula into the guide cannula, and all animals received 750 
ng kainic acid in 300 nL of isotonic salt solution. Notably, 
injections were provided using a Hamilton syringe at 1 minute 
duration. After injections, the internal cannulas were left in 
the guide cannula for 5 min. We recorded the behavioral and 
EEG changes until 2 h after the first observed motor seizure. 
Furthermore, behavioral changes after kainic acid injections 
were assessed per the following six-stage scale (32): stage 1, 
starting with mouth clonus; stage 2, automatisms (scratching 
and wet-dog-shake); stage 3, unilateral forelimb clonus; stage 
4, bilateral forelimb clonus; stage 5, bilateral forelimb clonus 
with rearing and falling; and stage 6, generalized tonic–clonic 
seizures.While stages 1 and 2 seizures were considered non-
convulsive limbic seizures, stages 3–6 were convulsive motor 
seizures.

During the experiments, we recorded time to the first limbic 
seizure, time to the first motor seizure, and the number of 
motor seizures. The seizures were terminated with 8 mg/kg 
i.p. diazepam at 2 hours after the first motor seizure. Rats 
were given 5mL of isotonic salt solution subcutaneously to 
compensate for fluid loss and housed in individual cages for 
another week before decapitation.

In the naive groups, both male GAERS (n=3) and Wistar (n= 
3) adult rats were only transcardially perfused as described 
earlier. We performed no stereotaxic procedure. In the sham 
control group, both male GAERS (n=3) and Wistar (n=3) 
adult rats were used. A cannula was implanted into the right 
basolateral amygdala (coordinates: AP, −2.6 mm; ML, ± 4.8; V, 
−7.5 mm from the bregma). After 1week of stereotaxic surgery, 
300 nL of artificial CSF was applied instead of kainic acid.

After 1 week of the status epilepticus period, we perfused 
rats transcardially with 4% paraformaldehyde solution and 
removed the brains, which were left in 4% paraformaldehyde 
solution overnight and then in a 30% sucrose solution for 72 
hours. Then, 20 µm-thick slices were obtained on gelatin-
coated glass slides with a cryostat, and consecutive sections 
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were obtained on different slides. While one group was stained 
with Fluoro-Jade B, the other was stained with Nissl staining.

Fluoro-Jade B Staining Procedure

The slides were dried at 37°C for at least 20 min and immersed 
in 100% ethyl alcohol for 3 minutes followed by 70% alcohol 
for 1 minute with a 1 minute change in distilled water. Then, the 
slides were transferred to a 0.06% potassium permanganate 
solution for 15 minutes, followed by 1 minute rinsing in distilled 
water and transfer to the Fluoro-Jade B staining solution for 
30 minutes. In addition, a 0.01% stock solution of the dye was 
prepared by dissolving 10 mg of Fluoro-Jade B in 100 mL of 
distilled water. The 0.001% working solution of Fluoro-Jade 
B was prepared by adding 10 mL of the stock Fluoro-Jade B 
solution to 90 mL of 0.1% acetic acid in distilled water. After 
staining, the sections were rinsed thrice for 1 minute each in 
distilled water. Finally, the excess water was drained off, and 
the slides were rapidly air dried (29).

Data Analysis

EEG and Seizure Analysis

The results are presented as mean ± SEM. Using the Student’s 
t-test, we analyzed the difference between the first motor 
seizures and the number of motor seizures after kainic acid 
injection in the Wistar and GAERS groups. We considered p< 
0.05 as statistically significant.

Fluoro-Jade B Staining Evaluation

The stained neurons were assessed semiquantitatively. If the 
number of neurons in a nucleus was between 1 and 10, it was 
accepted as (+); if 10 to 30, it was accepted as (++); and if >30, 
it was accepted as (+++). If there were no stained neurons, 
it was accepted as (−). We performed the statistical analysis 
with Graph Prism 5.0. Furthermore, the Mann–Whitney U-test 

was performed between groups with p<0.05 as statistically 
significant.

█    RESULTS
EEG Findings

The baseline EEG recordings of all Wistar rats demonstrated 
no abnormal discharges. In GAERS rats, the 30 minutes 
cumulative duration of SWDs in the pre-injection period was 
580.3 ± 81.3 seconds. Following kainic acid injections, all 
animals exhibited generalized convulsive seizures (Figure 1). 
Although the number of motor convulsive seizures did not 
attain statistical significance (15.1 ± 3.1 for GAERS rats and 
24.4 ± 4.5 for Wistar rats in a 2 hours period following kainic 
acid injections), the onset of motor seizures was significantly 
delayed in the GAERS groups (65.1 ± 9 minutes for GAERS 
rats and 34.8 ± 4.4 minutes for Wistar rats; p<0.05; Figure 
2A, B).

Microscopic Evaluation 

Both Fluoro-Jade B- and Nissl-stained sections were assessed 
microscopically. The neurodegenerative findings were parallel 
for both Nissl and Fluoro-Jade B staining (Figures 3A, B; 4A, 
B). Table I lists the sites stained by Fluoro-Jade B. In addition, 
we evaluated the differences between the ipsilateral and 
contralateral sides in each group and between the GAERS and 
Wistar rats in naïve, sham control, and kainic acid–injected 
groups. Notably, we found no Fluoro-Jade B–labeled cells in 
the naïve groups. Minimal Fluoro-Jade B–labeled cells were 
present in the sham control Wistar and GAERS animals in the 
cannula trajectory.

We compared the ipsilateral and contralateral sides of kainic 
acid–injected Wistar and GAERS groups, as well as the 

Figure 1: EEG trace of GAERS shows the suppression of SWD’s after kainic acid injection (black arrow) and the emergence of kainic 
acid–induced discharges. Detailed traces for a SWD (top left) and for kainic acid–induced discharges (top right). 
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Figure 2: A) Time to the first motor seizures after kainic acid injection, Wistar rats (n=7) and GAERS (n=7).*, p<0.05, the first motor 
seizure was significantly delayed in the GAERS group compared with the Wistar group. B) the number of motor seizures after kainic acid 
injection in Wistar rats (n=7) and GAERS (n=7).

Figure 3: A) The Fluoro-Jade B staining 
of the hippocampus of intra-amygdaloid 
kainic acid–injected Wistar rat. B) The 
Nissl staining of consecutive sections.

Figure 4: A) The Fluoro-Jade B staining 
of the CA3 of intra-amygdaloid kainic 
acid–injected GAERS. B) The Nissl 
staining of consecutive sections.

A B

A B

A B
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first convulsive seizure was considerably longer compared 
with the Wistar group. All these findings strengthen the 
hypothesis that GAERS rats exhibit a delay in the secondary 
generalization of focal limbic seizures. A study reported that 
the first seizure induced by low kainic acid doses was less 
severe and exhibited a longer latency in GAERS compared 
with non-epileptic controls (33).

Another finding of this study is the neurodegenerative 
changes because of status epilepticus after the kainic acid 
administration into the amygdala, which was observed in both 
GAERS and Wistar rats. In addition, extensive degeneration 
was observed in several brain regions in both groups. The 
neurodegeneration in the contralateral sides of the CA1, 
somatosensory cortex, and the laterodorsal thalamic nucleus 
in Wistar rats was spared; however, neurodegeneration was 
observed in these areas of the GAERS rats.

The somatosensory cortex, thalamic nuclei, and thalamic 
reticular nucleus are implicated in the pathogenesis of absence 
epilepsy (4,35). In this study, the thalamic structures primarily 
affected were the reticular, laterodorsal, and mediodorsal 
nuclei in both kainic acid–injected Wistar and GAERS 
rats. In addition, the ipsilateral thalamic reticular nucleus 
exhibited degenerated neurons in both groups. However, in 
both groups, the contralateral sides of the thalamic reticular 

ipsilateral and contralateral sides. In GAERS groups, we 
observed statistically significant differences in the Fluoro-
JadeB staining between the contralateral and ipsilateral sides 
of the CA1, CA3, reticular cortex, entorhinal cortex, piriform 
cortex, somatosensory cortex, putamen, and claustrum. In 
Wistar rats, the CA1, CA3, somatosensory cortex, entorhinal 
cortex, piriform cortex, reticular nucleus, amygdala, and the 
laterodorsal nucleus exhibited significant differences (Figure 
5A-J). In this study, another crucial finding was the unaffected 
motor cortex in both groups.

Comparison of GAERS and Wistar rats revealed statistically 
significant differences between both groups in both sides of 
the CA1 region of the hippocampus, somatosensory cortex, 
and laterodorsal thalamic nucleus where GAERS rats had 
dense staining.

█    DISCUSSION
One of the major findings of this study was the delay in the 
first convulsive seizure after administering kainic acid in 
the GAERS rats compared with the Wistar rats; this finding 
corroborated our prior work (18). These studies suggest that 
although GAERS rats exhibited convulsive seizures and status 
epilepticus after the kainic acid administration, the time to the 

Table I: Fluoro-Jade B Stained Areas

Kainic acid injected rats
GAERS Wistar

Ipsilateral Contralateral Ipsilateral Contralateral

Hippocampus

CA1 +++ + + --

CA3 +++ -- + --

Cortical Structures

Motor cortex -- -- -- --

Somatosensorial  cortex ++ + ++ --

Enthorinal cortex ++ + ++ +

Piriform ++ + ++ +

Dorsal endopiriform nuc. ++ ++ ++ ++

Thalamic Nuclei

Mediodorsal thalamic nuc. ++ ++ ++ ++

Lateradorsal thalamic nuc. ++ ++ ++ --

Reticular thalamic nuc. + -- ++ --

Other Structures

Lateral septal nuc. ++ ++ ++ ++

Amygdala ++ + ++ +

Putamen ++ -- ++ --

Claustrum + ++ + ++
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Figure 5: The ipsilateral and contralateral sides of kainic acid–injected Wistar and 
GAERS rats were compared. GAERS exhibited a statistically significant difference 
between the contralateral and ipsilateral sides of the CA1(A), CA3 (B), reticular nucleus 
(C), entorhinal cortex (D), piriform cortex (E), somatosensory cortex (F), putamen           
(G) and claustrum (H). In Wistar rats, the CA3, CA1, somatosensory cortex, entorhinal 
cortex, piriform cortex, reticular nucleus, amygdala (I) and the laterodorsal (J) nucleus 
exhibited significant differences.

A B C

D E F

G H

J
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play a role in the modulation, propagation, and cessation of 
different types of experimental seizures, including kainic acid 
injection and absence epilepsy (12,19,30). The contralateral 
sides of the CA3, reticular nucleus, and the putamen were 
spared in the Wistar and GAERS rats. 

█    CONCLUSION
This study has demonstrated that the ipsilateral CA1, somato-
sensory cortex, and laterodorsal thalamic nucleus are affected 
in GAERS rats suggesting that these regions play a role in the 
thalamocortical pathway in absence epilepsy.
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