Investigation of the Possible Protective Effects of Ketamine and Dantrolene on the Hippocampal Apoptosis and Spatial Learning in Rats Exposed to Repeated Electroconvulsive Seizures as a Model of Status Epilepticus

Ibrahim Devrim GURSOY1, Sureyya BARUN1, Saban Remzi ERDEM2, Ulya KESKIN2, Murat KIZILTAS1, Pergin ATILLA3, Sevda MUFTUOGLU3, Deniz YUCE4, Firat NARIN5, Mert ERTUNC6, Yildirim SARA6, Hande CANPINAR7

1Gazi University, School of Medicine, Department of Pharmacology, Ankara, Turkey
2Baskent University, School of Medicine, Department of Pharmacology, Ankara, Turkey
3Hacettepe University, School of Medicine, Department of Histology and Embryology, Ankara, Turkey
4Hacettepe University, School of Medicine, Department of Preventive Oncology, Ankara, Turkey
5Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
6Hacettepe University, School of Medicine, Department of Pharmacology, Ankara, Turkey
7Hacettepe University, School of Medicine, Department of Basic Oncology, Ankara, Turkey

This study has been presented at the 29th International Epilepsy Congress between 28th August and 1st September 2011 at Rome, Italy

Corresponding author: Sureyya BARUN ☉ barun@gazi.edu.tr

ABSTRACT

AIM: To evaluate the possible neuroprotective effects of ketamine and dantrolene on the hippocampal apoptosis and spatial learning in rats exposed to repeated electroconvulsive seizures (ECS) as a model of status epilepticus (SE).

MATERIAL and METHODS: Twenty-four rats were assigned to 4 groups. 1st Group was Sham. 2nd Group was ECS: ECS was induced by ear electrodes via electrical stimulation. The same ECS protocol was applied to the 3rd and 4th Groups which received ketamine (40 mg/kg s.c.) or dantrolene (5 mg/kg i.p.) 1 h before each ECS, respectively. Following 30 days of recovery, the cognitive status of the animals was evaluated via Morris Water Maze (MWM). The same experimental protocol was repeated 14 days afterward to evaluate the retention of the memory. Hippocampal apoptosis was examined in corresponding experimental groups.

RESULTS: All the animals in four groups learned the task with no significant difference between groups in MWM. The ECS+ketamine group showed memory impairment 14 days afterward. ECS+dantrolene group was not different from controls. ECS caused long term apoptotic processes in dentate gyrus (DG) and non-apoptotic neuronal injury in CA1 and CA2.

CONCLUSION: Dantrolene and ketamine inhibited apoptosis and showed neuroprotective effects. Although ketamine and dantrolene inhibited ECS-induced apoptosis and non-apoptotic injury, they did not produce similar effects on memory retention. It will be warranted to evaluate cognitive dysfunction by taking into consideration the other factors in addition to apoptosis and neurodegenerative changes.

KEYWORDS: Status epilepticus, Electroconvulsive seizure, Ketamine, Dantrolene, Cognition, Rats
INTRODUCTION

Since memory-relevant structures are frequently involved during status epilepticus (SE), learning and memory functions may be impaired. Cognitive dysfunction has been shown in most patients to be associated with neuronal loss in hippocampus. SE induced by various agents including kainic acid, pilocarpine or intracranial electrical stimulation in animals also lead to neuronal loss in hippocampus associated with cognitive impairment (6,26,36,41,70). However, it is unknown whether cognitive impairment results from the loss of memory processing neurons or increased activity-induced plasticity that inhibits normal memory formation (4,27).

Morris Water Maze (MWM) test is most widely used paradigms for testing visual-spatial learning and memory in rats (8). Hippocampal lesions are associated with impairments in spatial learning and memory (1,57).

Various studies show that apoptotic pathways are activated due to repeated seizure activity (29). It has been clarified that prolonged seizures lead to apoptotic DNA fragmentation and DNA laddering in rat brains (17,61). Loss of Ca$^{2+}$ homeostasis produces apoptosis by promoting mitochondria-mediated caspase activation (58).

Glutamate overflow is playing a pivotal role in epileptic seizure, status epilepticus or seizure induced neuronal damage. Glutamate-induced NMDA receptor activation increases Ca$^{2+}$ influx and leads to cell necrosis and apoptosis (46). Ketamine is a non-competitive glutamate NMDA receptor antagonist and although controversial studies, it has been shown to have anti-apoptotic and neuroprotective properties (12,33,34,64).

Calcium, in particular, intracellular Ca$^{2+}$ plays a crucial role in the development of neuronal injury (19). Significant Ca$^{2+}$ efflux from the endoplasmic reticulum (ER) induces the expression of stress molecules and protein misfolding, triggering apoptosis (35,80). Dantrolene, which is a specific ryanodine receptor (RYR) antagonist, may protect neurons from disruptions in Ca$^{2+}$-homeostasis by inhibiting Ca$^{2+}$ release from the ER (62). Therefore, it has recently been used to diminish cell death resulting from ischemia, spinal cord injury and epileptic seizures (47,60,75).

Electroconvulsive seizure (ECS) is used as a model to induce SE in experimental animals (18). In previous studies, repeated ECS treatments impaired the spatial learning and gave rise to a number of morphological and functional changes in the hippocampus of rats (23,43,67). Although ECS does not lead to remarkable neuronal loss in hippocampus, apoptotic changes have not been investigated in this model in correlation with cognitive deficits (23,65).

In this study, the aim was to investigate the possible neuroprotective effects of ketamine and dantrolene on hippocampal apoptosis and cognitive functions in rats exposed to repeated ECS applications. Spatial learning and memory were tested via MWM.

Clarifying the underlying mechanisms in repeated SE-induced cognitive impairment will facilitate our understanding of the pathophysiology. Thus, it might be possible that new treatment strategies could be developed against SE-induced brain injury.

MATERIAL and METHODS

Experimental Design

This study was performed according to the Helsinki Declaration about animal studies. The experiments were conducted in accordance with Guide for the Care and Use of Laboratory Animals Eighth Edition (NIH publications). Gazi University Scientific Research Committee granted the study with project number 01/2010-70. Baskent University Ethical Committee approved the protocol on 08.19.2010 with approval number DA 10/18.

A total of 48 Wistar rat, which were 2 months of age were included in 8 groups in the study, as 6 rats in each group. The rats were exposed to standard conditions of 20-22 °C of temperature, and 12 hours of light-darkness cycle. Food and water were not restricted. Twenty-four rats were randomly assigned to the following 4 study groups in order to evaluate spatial learning and memory through the MWM test:

1. Control Group (Control): Ear electrodes were applied for 30 seconds without stimulation.

2. ECS Group: Stimulation was applied to rats by ear electrodes as 20 Volts and for 2 seconds, which supplied by May STPT 05 Research Stimulator (maximum energy 150 Volts) equipment. ECS treatment was repeated every other day for 5 times, and after 2 hours of the last application, ECS stimulus was administered and the total number of ECSs was completed to 6 cycles. This protocol was adapted from a previous study (65). The rats were kept for 1 month for recovery.

3. Ketamine+ECS (Ketamine) Group: Ketamine was applied to rats 1 hour prior to each application of ECS at sub-anesthetic doses (40 mg/kg s.c.).

4. Dantrolene+ECS (Dantrolene) Group: Dantrolene was applied to rats 1 hour prior to each application of ECS (10 mg/kg i.p.).

Chemicals were not administered before the 6th ECS treatment. Following 30 days of recovery, spatial learning and memory were tested via MWM.

MWM Protocol

Animals were evaluated for cognitive functions and memory by the MWM test at Baskent University Animal Laboratory. A black and cylindrical tank was used for the experiments. The tank was filled with water of 50 cm in-depth, and the temperature was stabilized to 22±1°C. It was also surrounded by a screen and isolated from the environmental stimulants. The water tank was divided into four quadrants by fictitious lines. The escape platform was placed in the same quadrant at a depth of 2.5 cm from the surface. A video camera was placed on the top of the tank and connected to a computer that runs an image processing software (53).
All rats were trained two times a day for 4 days, and evaluated during the remaining 5 days (between 1st and 5th days). At the trainings, rats were placed facing to the wall of the tank, and the starting point was randomized for four quadrants. Rats were allowed for exploring the tank for finding the escape platform, and the ones that could not find the platform were assisted. The rats were kept on the platform for 15 seconds for forming the memory. On the 19th day, MWM experiments were repeated to test the retention of the memory.

The parameters evaluated at the MWM experiments were as follows:

1. Escape Latency Time (ELT) (time to finding of escape platform, seconds)
2. Mean ELT (arithmetic mean of ELT values for north, south, east and west)
3. Swimming speed (cm/sec)
4. Cumulative swimming distance (cm)

Apoptosis Group

Twenty-four rats in the apoptosis group were assigned to 4 groups including 6 rats in each group (Control, ECS, ECS+Ketamine, ECS+Dantrolene). These rats were sacrificed under thiopental anesthesia (20 mg/kg) at the end of the 30th day without subjecting to MWM experiments, and the TUNEL method was used for evaluation of the morphological and temporal characteristics of apoptosis in the hippocampus.

Histological Evaluation and Determination of Apoptosis

Rats were sacrificed by decapitation after thiopental sodium administration (20 mg/kg, Pental Sodyum, IE Ulagay, Istanbul, Turkey). Hippocampi were removed and alternatively sampled from the left and right sites.

The hippocampi samples of control, ECS, ECS+dantrolene and ECS+ketamine groups were fixed in 10% buffered formalin for 72 hours (h), processed according to routine light microscopy method and embedded in paraffin. The serial sections of 5 mm were stained with hematoxylin-eosin for histological evaluations, and TUNEL for determining the apoptosis. All samples were evaluated by Leica DM6000B light microscope, and the images were transferred to electronic media by DC 500 Leica digital camera.

The transverse sections of 5 mm were obtained by VSLM1 "vibroslice vibrating slicer" device in oxygenated dissection solution at freezing temperature (low Ca²⁺-high Mg²⁺ artificial cerebrospinal fluid; ACSF), and incubated at 34 °C for 30 minutes. The sections were kept in ACSF containing 124 mM NaCl, 5 mM KCl, 12 mM NaH₂PO₄, 26 mM NaHCO₃, 10 mM d-glucose, 2 mM CaCl₂, 1 mM MgCl₂, and 95% O₂ and 5% CO₂ for at least 60 minutes at room temperature.

The healthy and contracted neurons with basophilic cytoplasm were counted in CA1, CA2 and dentate gyrus regions at 40x magnification and 5 fields, by 2 histologists blinded to the study groups, and were evaluated according to the criteria showed in Table I.

Table I: Histological Neuronal Evaluation Criteria

<table>
<thead>
<tr>
<th>Healthy Neuron Count</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 25%</td>
<td>+</td>
</tr>
<tr>
<td>25-50%</td>
<td>++</td>
</tr>
<tr>
<td>50-75%</td>
<td>+++</td>
</tr>
<tr>
<td>75-100%</td>
<td>++++</td>
</tr>
</tbody>
</table>

TUNEL (+) cells were counted at 40x magnification in all samples stained with TUNEL method, and regional apoptotic indexes were calculated (TUNEL (+) cell count/100 cells).

Statistical Analyses

The analyses were performed with SPSS 18.0 (IBM Inc., USA) software. Qualitative data were presented with frequencies, and quantitative data were presented with means and standard deviations. Statistical comparisons were performed by using repeated- measures ANOVA for the dependent groups, and by using one-way ANOVA for the independent groups. The statistical significance level of Type-I error was 5% in the study.

RESULTS

The Results of MWM Experiments

Mean ELT

All the animals in 4 experimental groups learned the platform finding task. The change percent of mean ELT values was calculated for 5 days. The 2nd, 3rd, 4th and 5th days values were significantly lower than 1st day values. There were no significant differences between the mean ELT of four study groups for each day for 5 days. For determining the retention in each group, mean ELT values were calculated for the 19th day and compared with the 5th day mean ELT values. The analyses revealed that the ECS+ketamine application inhibited the progression of memory retention in rats on the 19th day. And, ECS+dantrolene application was found to have no negative effects on spatial learning and memory retention (Figure 1).

Cumulative swimming distance

The cumulative swimming distances were gradually decreased in all groups. But, the differences between groups were not statistically significant. These results are in accordance with the mean ELT values (Figure 2).

Swimming speed

The swimming speed was not significantly differed between groups during 5 days. Ketamine significantly decreased the swimming speed on the 19th day (Figure 3).

Histological Evaluation and Determination of Apoptosis

Control group, Hematoxylin-eosin staining

Mild edema, which was more significant in the neuropil, was observed below piamater in all samples of the electroshock-free control group. Also, edema was observed in the basal
margin of granular neuron groups in dentate gyrus adjacent to the CA4 region, and around vessels in hippocampus.

There were basophilic and condensed neurons in hippocampus, which are more significant in some fields. Some neurons were contracted and basophilic viewed between healthy neurons in CA1 and CA3 regions. In the dentate gyrus region, most of the granular neurons were normal, but some dense neurons with basophilic cytoplasm were significant (Figure 4A-D).

Control group, TUNEL staining

In one sample in the control group, TUNEL (+) neurons were determined in a particular field of the CA1 region. None of the remaining samples revealed TUNEL (+) neurons in the CA1 and CA2 regions. There were no TUNEL (+) neurons in dentate gyrus regions of the samples (Figure 5A-D).

ECS group, Hematoxylin-eosin staining

Mild edema was observed in neuropil, particularly significant below pia mater. Edema was also observed around the pyknotic neurons with basophilic condensed cytoplasm in the CA1-4 regions and the vessels of Ammon’s horn. There was mild stasis in the vessels.

The pyknotic and basophilic cytoplasm neurons were more than normal structured pyramidal neurons in localized fields in the CA1 and CA2 regions. The numbers of pyknotic and basophilic cytoplasm neurons were lower in the CA1 region, and increased through CA2. In the dentate gyrus, there were pyknotic and basophilic neurons especially in the terminal regions, along with the granular normal neurons (Figure 6A-D).

ECS group, TUNEL staining

Few numbers of TUNEL (+) neurons were determined between the pyknotic neurons and healthy neurons in CA1 and CA2 regions. TUNEL (+) cells were more in some localized fields through CA2. There were more TUNEL (+) neurons than the CA1 and CA2 regions, between healthy and pyknotic neurons in terminal parts of the dentate gyrus (Figure 7A-D).

ECS+ketamine group, Hematoxylin-eosin staining

There was mild edema in the neuropil, particularly significant below pia mater, similar to control, ECS and dantrolene groups. There was also mild edema around some vessels. There was no stasis in most of the vessels.

Most of the neurons in the CA1 and CA2 regions were healthy, and there were limited number of neurons with basophilic cytoplasm between the normal neurons. These were not degenerated neurons. Most of the granular neurons in the dentate gyrus region were also healthy. There were very few numbers of neurons with basophilic cytoplasm between them. Apart from the dantrolene group, there were no infiltrative neurons (Figure 8A-D).

ECS+ketamine group, TUNEL staining

There were rare TUNEL (+) neurons in the CA1 region in all samples, but one. And, in that sample there were more TUNEL (+) neurons in a localized field in the CA1 region. There were no TUNEL (+) neurons in the dentate gyrus region (Figure 9A-D).
Figure 4: Distribution of healthy neurons in study groups.

Figure 5: Distribution of apoptotic neurons in study groups.
Figure 6: Distribution of pyknotic and healthy neurons in ECS group (H&E; x100, x200, x200, x400).

Figure 7: Distribution of TUNEL positive neurons in ECS group (Tunel method; x400, x200, x100, x200).
Figure 8: Distribution of neurons in ECS and Ketamine groups (H&E; x100, x200, x200, x400).

Figure 9: Distribution of neurons in ECS and Ketamine groups (TUNEL method, x100, x200, x400, x400).
ECS+dantrolene group, Hematoxylin-eosin staining

There were clefts due to edema in the neuropil, particularly below pia-mater, such as control and ECS groups. But, the edema in neuropil was relatively milder and localized, when compared to the ECS group. There was also edema around vessels like other groups. Apart from the ECS group, edema was not observed in the field through the CA4 region below the granular neurons in the dentate gyrus region, excluding only one sample. Also, apart from the ECS group, there was no edema around the pyknotic neurons.

Several of condensed neurons with pyknotic basophilic cytoplasms in the CA1 and CA3 regions of Ammon’s horn were higher than the control group, but similar to numbers of pyknotic neurons in the ECS group. Infiltrative cells were observed in two samples. And, in the dentate gyrus region, few numbers of pyknotic neurons with basophilic cytoplasm were observed between granular neurons (Figure 10A-D).

ECS+dantrolene group, TUNEL staining

In two samples, some TUNEL (+) neurons were observed in basal fields of the dentate gyrus region. There were no TUNEL (+) neurons in the the CA1 and CA2 regions, excluding one sample. Few numbers of TUNEL (+) cells in some field of dentate gyrus region were observed in two samples (Figure 11A-D).

Distribution of healthy neurons between study groups

There were statistically significant differences for distributions of normal neurons in CA1 and CA2 regions of control, ECS, ECS+dantrolene and ECS+ketamine groups (p=0.005, p=0.001, respectively). Further analyses revealed that these differences were related to the ECS group. The distribution of healthy neurons was significantly lower than the other groups. There was no statistically significant difference in the distribution of healthy neurons in the dentate gyrus region between study groups (p>0.05) (Table II, Figure 12).

Distribution of apoptotic neurons in each study group

There was a statistically significant difference in the number of apoptotic cells between CA1, CA2, and dentate gyrus regions, only in the ECS+ketamine group (p=0.012). Further analyses revealed that this difference was related to the dentate gyrus region. The number of apoptotic cells was significantly higher in the dentate gyrus region of the ECS group. The antiapoptotic effect of ketamine was found to be higher than dantrolene (Table III, Figure 13).

Distribution of apoptotic neurons between study groups

There was a statistically significant difference for several apoptotic cells in the dentate gyrus region between control,

| Table II: Distribution of Healthy Neurons in CA1, CA2 and Dentate Gyrus Regions |
|-------------------|-------------------|-------------------|-------------------|-------------------|
| | CA1 | CA2 | Dentate gyrus | p** |
| | Mean ± SD | Mean ± SD | Mean ± SD | |
| Control | 3.83 ± 0.41 | 3.83 ± 0.41 | 3.83 ± 0.41 | - |
| ECS | 2.67 ± 0.52 | 2.33 ± 0.52 | 3.6 ± 0.55 | 0.004 |
| ECS+Dantrolene | 3.67 ± 0.52 | 4 ± 0 | 3.6 ± 0.55 | 0.410 |
| ECS+Ketamine | 3.83 ± 0.41 | 3.83 ± 0.41 | 3.6 ± 0.55 | 0.410 |
| | p*=0.001 | p*<0.001 | p*=0.826 | |

*: One-way ANOVA; **: Repeated measures ANOVA.

| Table III: Distribution of Apoptotic Cells in CA1, CA2, and Dentate Gyrus Regions |
|-------------------|-------------------|-------------------|-------------------|-------------------|
| | CA1 | CA2 | Dentate gyrus | p** |
| | Mean ± SD | Mean ± SD | Mean ± SD | |
| Control | 11 ± 26.94 | 0.83 ± 2.04 | - | 0.402 |
| ECS | 8.67 ± 9.95 | 2.33 ± 2.73 | 16.8 ± 16.42 | 0.082 |
| ECS+Dantrolene | 0.5 ± 1.22 | - | 2.8 ± 3.83 | 0.149 |
| ECS+Ketamine | 11 ± 14.28 | 1.83 ± 1.47 | - | 0.012 |
| | p*=0.636 | p*=0.165 | p*=0.012 | |

*: One-way ANOVA; **: Repeated measures ANOVA.
Figure 10: Distribution of pyknotic and healthy neurons in ECS and Dantrolene groups (H&E; x100, x200, x200, x400).

Figure 11: Distribution of neurons in ECS and Dantrolene groups. (TUNEL method; x200, x400, x200, x400).
ECS, ECS+dantrolene and ECS+ketamine groups (p=0.012). Further analyses revealed that this difference was related to the ECS group (Table III, Figure 13).

DISCUSSION

Epilepsy is associated with co-morbidities including learning and memory impairment (20,21). Although cognitive impairment is the most debilitating comorbidity, current treatment strategies do not contribute to improvement in the quality of life (49).

Ketamine is a non-competitive NMDA receptor antagonist and acts by binding to phencyclidine site (3,59). It has been shown that ketamine exhibits antiepileptic and neuroprotective effects (14,16,69). However, it is difficult to analyze its actions in clinical studies since clinical evidences are scarcer and more difficult since it is used in polytherapy situations (56).

In this study, although spatial learning was not affected, ketamine administration before each ECS application impaired the development of memory-retention. In consistent with this study, previous studies show that ketamine impairs cognition and memory (52,56). However, the exact mechanisms are not clear.

Acute ketamine administration gives rise to impairment in spatial learning (50). A hypothesis was put forward that the hypofunction of NMDA receptors are responsible for the deficits in cognitive functions (10,66). In addition, acute ketamine treatment leads to a prominent increase in dopamine level.
and activation of D1/D5 receptor activation inhibits long-term potentiation (LTP) (15,38,42,48). Another effect of ketamine is to produce disinhibition on glutamatergic neurons, resulting in an increase in the release of glutamate (5,42,48,83). Increased glutamate activates the post-synaptic non-NMDA receptors that trigger metabotropic glutamate receptors (mGluR)-dependent long-term depression (LTD) (22,82). It seems that these results account for the ketamine-induced cognitive dysfunction in acute administration. However, it is not possible to explain ketamine-induced memory retention on the long-term basis observed in the present study based upon the hypofunction of NMDA receptors and the inhibitory effect of dopamine on LTP via D1/D5 receptors.

Since there are controversial reports on the effects of ketamine on cognitive functions on a long run, it is not clear whether it specifically affects the consolidation stage of the memory (51). It is known that LTD plays a critical role in both the formation and retention of memory as well as LTP (7,54). Impairment in hippocampus-dependent memory retention occurs due to LTD formation in the synapses between Schaffer collateral and CA1 region. AMPA receptor internalization is absolutely necessary for the formation of LTD (25,81). In consistent with the present study, it has been shown that ketamine causes memory-retention deficit through induction of LTD in Schaffer-CA1 synapses (15). Taken these together, impairment in memory-retention on a long-term basis in this study is most likely due to LTD formation resulting from NMDA receptor internalization in Schaffer-CA1 synapses. In favour of this study, although ketamine-induced LTD may last by 24 h, impairment in memory retention may last for weeks (45). Protein synthesis and gene expressions may also take place in the mechanisms of ketamine (44).

Additionally, ketamine impairs the consolidation stage of the long-term memory, at least in part by preventing a learning-induced increase in BDNF levels in hippocampus (24,28,37). Accordingly, it can impair the cell morphology in immature GABAergic neurons, leading to interaction with the build-up of neural networks in the brain (77,78). Therefore, it is feasible to speculate that activity-induced plasticity may also be another explanation for the ketamine-induced impairment in memory retention in this study.

The most important result obtained from the present study is that ketamine impaired the memory-retention in an excitotoxic condition due to the ECS treatments (2). However, in a previous study, when it was administered alone for 6 months (30 mg/kg), cognitive dysfunction was not observed (71). Although acute ketamine administration shows the neuroprotective effect (12,64), our results suggest that ketamine use in excitotoxic conditions may be harmful on a long-term basis. Further studies are required to clarify the exact mechanisms.

Calcium released from intracellular stores has a role in neuronal injury (19). Dantrolene is an RYR antagonist and approved for the treatment of malignant hyperthermia, malignant hyperpyrexia and neuroleptic malignant syndrom (13,32,63). In various studies, dantrolene exhibits neuroprotective against spinal cord ischemia, stroke and epilepsy induced neuronal injuries via inhibition of Ca\(^{2+}\)-induced Ca\(^{2+}\) release from ER (47,60,75). Apoptosis may also be triggered by the Ca\(^{2+}\) released from ER (72). It has been shown that dantrolene may produce neuroprotective effects by inhibition of apoptosis and neuronal cell death through blockade of Ca\(^{2+}\) release from ER (11,30,40,79).

In this study, dantrolene produced no harmful effect on spatial learning and memory retention. In addition, dantrolene abolished ECS-induced tonic-clonic muscle contractions. Although, dantrolene was also tested in status epilepticus in human and conflicting results were obtained (31,74), further studies are required to take the advantage of this agent. Thus, dantrolene appears to be worthy of testing in excitotoxic conditions as a neuroprotective agent.

ECS treatment led to apoptosis in dentate gyrus and non-apoptotic neuronal injury in CA1 and CA1 regions in this study. Both ketamine and dantrolene inhibited apoptosis in dentate gyrus. Additionally, they showed neuroprotective effects in CA1 and CA2. ECS-induced neurodegenerative changes are consistent with other studies performed with different experimental epilepsy models (43,61,70). Neuronal loss or neurodegenerative alterations in hippocampus are associated with cognitive dysfunctions (9,68,73). However, the functions of all hippocampal regions have not been identified precisely (39). Nevertheless, it is known that synchronization of the neurons in dentate gyrus plays a critical role in memory retention and carries the memory from the entorhinal cortex to CA3 (8,76). In the present study, it was observed that ECS induces long term apoptotic processes. However, the antiapoptotic properties of ketamine and dantrolene did not lead to the parallel effects on memory retention. Therefore, it is not possible to explain the hippocampus-based cognitive dysfunctions by apoptotic or non apoptotic neuronal loss mechanisms. It will be warranted to evaluate the physiopathology by taking into consideration the aforementioned factors in addition to neuronal loss or neurodegenerative changes.

CONCLUSION

In the present study, ketamine led to a decline in swimming rate which is associated with the memory-retention deficits in animals. This result may be due to major depression or motor deficit. In favour of the major depression, repeated use of ketamine has been shown to reduce the function of the prefrontal dopaminergic system and compensatory upregulation of presynaptic D1 receptors (55). Since there is no report about the ketamine-related motor deficit in literature, a decline in swimming rate seems to result from major depression. However, it needs further investigation.

REFERENCES

47. Mody I, MacDonald JF: NMDA receptor-dependent excitotoxicity: The role of intracellular Ca²⁺ release. Trends in Pharmacological Sciences 16:356-359, 1995

56. Newcomer JW, Farber NB, Jevtic-Todorovic V, Selke G, Melson AK, Hershey T, Craft S, Olney JW: Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 20:106-118, 1999

57. O’Reilly KC, Alarcon JM, Ferbinteianu J: Relative contributions of CA3 and medial entorhinal cortex to memory in rats. Front Behav Neurosci 8:292, 2014

66. Rowley HL, Marsden CA, Martin KF: Epilepsy and Spatial Learning

67. Turk Neurosurg, 2020 | 13

Gursoy ID. et al: Epilepsy and Spatial Learning

74. Takashima S: Dantrolene sodium may not be effective in the treatment of status epilepticus. Rinsho Shinkeigaku 52:262, 2012

