Thoracic Vertebral Hemangioma Causing Paraplegia in Klippel-Trenaunay-Weber Syndrome: Case Report

A 30-year-old man with paraplegia was admitted with a complaint of rapidly progressive weakness and numbness in his legs for the past month. His past medical history consisted of hematuria and a deep venous thrombosis surgery 2 months before the weakness of his legs. On physical examination, there was full weakness of both lower extremities and loss of sensation. The patient had paraplegia but no urinary or anal incontinence. There was a hyperpigmented lesion on the patient’s right leg. Laboratory findings revealed microscopic hematuria.

X-rays of the thoracic spine were reported as degenerative changes and trabeculated pattern of the T5 vertebra. Computerized tomography (CT) scan of the thoracic spine showed coarse trabeculation within the T5 vertebra involving both anterior and posterior vertebral elements (Figure 1). CT of the thoracic spine showed multiple hemangiomas on the posterior side of the left 3rd and 4th costae (Figure 2).

Ozburk OKUTAN1, Timur YILDIRIM1, Serdar ISIK2, Berna GOKCE1, Baris SAYGILI1, Ethem BESKONAKLI1

1Ankara Ataturk Education and Research Hospital, Department of Neurosurgery, Ankara, Turkey
2Ordu University, Faculty of Medicine, Department of Neurosurgery, Ordu, Turkey

Corresponding Author: Timur YILDIRIM / E-mail: mdtimur@hotmail.com
Magnetic resonance imaging (MRI) of the thoracic vertebral column revealed a T5-level soft-tissue mass that involved both the anterior and posterior vertebral elements, extended into the epidural space, caused expansion of the laminae and pedicles on both sides, and significantly compressed the spinal cord (Figure 3). On cranial MR studies, the anterior horn of the left lateral ventricle was significantly dilated compared to the right side (Figure 4A) and there was cyst formation on the left posterior part of hypophysis with the stalk deviated to the right side (Figure 4B).

Lower extremity venous Doppler ultrasound revealed intraluminal echogenic thrombosis material in the right superficial femoral vein, and spontaneous reflux blood flow on both left and right main femoral veins.

C-arm fluoroscopy was used to determine the thoracic level and paraspinal muscles were dissected at the T4-5-level with a posterior approach. Posterior decompression was performed by totally removing the T5 vertebral laminae. The posterior epidural tumoral tissue was resected as much as possible. The operation ended uneventfully. Histopathological examination of the resected mass showed vascular slits and endothelium proliferation indicating that the lesion was a VH and showed no signs of malignancy. Movement was observed on both toes on the first day after surgery and the patient underwent physiotherapy. Within two weeks of physiotherapy, the patient showed a rapid development and was discharged with 3/5 strength of lower extremities.

DISCUSSION

VHs are common entities that rarely involve the posterior vertebral elements as they are usually located in the vertebral corpus. VHs are commonly seen in the thoracic vertebrae and are asymptomatic. VHs may cause back pain in only 1% of cases. They should be considered in the differential diagnosis as they may rarely cause neurological symptoms and compressive myelopathy (1). VHs may be multiple and associated with the Klippel-Trenaunay-Weber syndrome. The Klippel-Trenaunay syndrome (KTS) was first described by Klippel and Trenaunay in 1900. This disorder was described with the three main symptoms of cutaneous hemangioma, varicose veins and bone and soft tissue hypertrophy, known as a triad affecting one or more limbs (3). Parkes and Weber added the arteriovenous fistula to this syndrome. This form of KTS was called Klippel-Trenaunay-Weber syndrome. In a study at the Mayo Clinic, 252 patients with KTS were evaluated. Varicosities were seen in 72%, portwine stain in 98% and limb hypertrophy in 67% (7). These are classified...
as major findings with arteriovenous fistula. Although most patients demonstrate all four major findings, the clinical presentation is variable and the cause is most likely genetic in view of recent discoveries of gene mutations in KTWS patients (2). Our patient had no limb hypertrophy but there was a hyperpigmented lesion on the right leg, a hemangioma on the thoracic vertebra and multiple hemangiomas on the 3rd and 4th costae.

Minor findings of KTWS patients are hematuria, thrombophlebitis, visceral vascular malformations involving the liver, spleen, kidney and bladder, rectal bleeding, spinal arteriovenous fistulas, asymmetric facial hypertrophy, cataracts, glaucoma, micro or macrocephaly, seizures or mental retardation, congestive heart failure, intestinal lymphangiectasia, polydactyly, syndactyly or macrodactyly, length and diameter discrepancy between two extremities, and lymph edema (7,8). The patient we reported had multiple hemangiomas involving vertebra and costae, deep venous thrombosis, a hyperpigmented lesion on the right leg, microscopic hematuria, a hypophyseal cystic structure pushing the stalk to the right side and ventricular asymmetry in the brain.

CONCLUSION

KTWS is a rare and complex disease. As a component of this syndrome, vertebral hemangiomas are usually asymptomatic but can cause rapid and progressive neurologic symptoms that are usually insidious in onset. In conclusion, care should be taken to determine other clinical components in KTWS and multisystematic evaluation is very important to determine appropriate treatment modalities.

We have not had any grants or funds in support of the study.

REFERENCES

Figure 4: A) On cranial MR studies, anterior horn of the left lateral ventricle was significantly dilated comparing to the right side. B) On cranial MRI a cyst formation on the left posterior part of hypophysis and the stalk was deviated to the right side.