Distal Posterior Cerebral Artery (P3) Aneurysm: Occipital Interhemispheric Approach (Case Report)

EMRE METIN GÜNER, TANSU MERTOL, KEMAL YÜCESOY, ARIF ÖSÜN, ÖGUZ DICLE
Dokuz Eylül Üniversitesi Tıp Fakültesi Neurosurgery (EMG. TM. KY. AÖ) and Radiology (OD) Departments Izmir-Turkey

Abstract: We report a case of a ruptured saccular aneurysm of the distal posterior cerebral artery (P3). The aneurysm was successfully clipped through an occipital interhemispheric approach and the patient was discharged without any neurological deficit.

INTRODUCTION

Aneurysms of the posterior cerebral artery (PCA) are rare, comprising only 0.7 to 2.2% of all cerebral aneurysms (1,2,3,9). Yaşargil subdivided these aneurysms into four groups according to the location of the lesion: P1, P1/P2 junction, P2, and P3 aneurysms (20). Distal PCA aneurysms occur less often than proximal ones (1). Surgical treatment of PCA aneurysms has long been associated with high rates of morbidity and mortality. These rates increase when they rupture and result in subarachnoid haemorrhage (SAH) (12,13,14,19).

CASE REPORT

This thirty-eight-year old right-handed man had a sudden headache after exertion which continued for a few days, with concomitant emesis. On the fifth day, the patient became unconscious and was admitted to a local hospital. A CT scan with and without contrast showed subarachnoid hemorrhage with aneurysmatic dilatation in the right PCA area. On the thirty-second day of admission, the patient was transferred to our hospital.

Examination: On admission there was mild neck stiffness with no neurological deficit. No visual field defect was found. Routine blood and urine analyses were normal. Digital subtraction angiography showed an aneurysm of 1 cm in diameter in the P3 segment of the right PCA, and local vasospasm of the same artery (Figure 1.2).

Operation: On the 5th hospital day, a right occipital craniotomy was performed and using interhemispheric approach, the calcarine artery was identified. Dissection was directed to the bifurcation of the medial occipital artery. The P4 segment was

Fig. 1: Pre-operative DSA (antero-posterior view)
Fig. 2: Pre-operative DSA (Lateral view)

dissected through the lateral occipital artery junction. At the bifurcation the aneurysm was seen and dissected after temporary clipping (110 seconds). The neck of the aneurysm was clipped with a Yaşargil clip and coagulated by bipolar cautery. Intraoperatively no complications were noted.

Angiography performed on the ninth day after operation showed good distal PCA blood flow and complete occlusion of the aneurysm (Figure 3, 4). The patient was discharged without any neurological deficit. The control visual field tests were normal. At a one-year follow-up he continued to remain symptom-free.

Fig. 3: Post-operative DSA (Antero-posterior view)

Fig. 4: Post-operative DSA (Lateral view)

DISCUSSION

PCA aneurysms account for only 0.7 to 2.2% of all cerebral and 7 to 15% of all vertebrobasilar aneurysms (3,4,10,12,18,20). We have seen 3 patients with PCA aneurysms among 208 cerebral aneurysm (1.5%) and 31 vertebrobasilar aneurysm (10.1%) patients. Patients with PCA aneurysms tend to be younger than those with other cerebral aneurysms and males slightly predominate (12). They tend to be giant in young people (1).

Yaşargil subdivided these aneurysms into four groups according to the segment of the PCA involved (20). P3 aneurysms are very rare; to date, only thirteen patients have been reported (Table 1).

Several authors have described surgically-treated cases of PCA aneurysm (1,3,4,5,6,8,9,12,17,18). The operative approach will vary depending on the site of the aneurysm: the subtemporal and/or pterional approach may be used for P1 and P1/P2 junction aneurysms and the subtemporal approach for P2 and P3 aneurysms (14,16,20). However, Yaşargil and other authors preferred the occipital interhemispheric approach in their patients with P3 aneurysms (12,14,16,18).

The morbidity and mortality rates for patients with PCA aneurysms are higher than other cerebral aneurysms. As the patient's age decreases and the aneurysm's size increases, morbidity and mortality increases (2,7,11,15).
Dissection through the subtemporal approach in PCA aneurysm patients needs to be performed very carefully since ipsilateral third nerve paresis and palsy may be produced (3,14,18).

Occlusion of the posterior thalamoperforating and thalamogeniculate arteries which arise from the P1 segment may result in contralateral hemiplegia, cerebellar ataxia, dysarthria, and cerebral tremor associated with ipsilateral oculomotor nerve paresis. Infarction of the area perfused by the thalamogeniculate arteries arising from the P2 segment causes the thalamic syndrome of Dejerine and Roussy (14,21).

Also, thalamic ischaemia may cause confusion and impairment of short-term memory (14).

On the contrary, in the occipital interhemispheric approach only injury of the lateral and medial occipital arteries and their branches may occur (20,21).

Because the complication rates are higher with the subtemporal approach (1,3,4,12,14), we believe that if occipital interhemispheric approach is preferred for distal PCA aneurysms the complication rate will be decreased.

Table 1: Previously Reported Cases With P3 Aneurysm

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Age</th>
<th>Sex</th>
<th>Symptoms</th>
<th>Sah</th>
<th>Site</th>
<th>Approach</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obrador</td>
<td>1967</td>
<td>20</td>
<td>F</td>
<td>Blindness, left hemiparesis</td>
<td>(-)</td>
<td>P3 R</td>
<td>Subtemporal</td>
<td>Hemiplegia, Asterognosis</td>
</tr>
<tr>
<td>Bertrams</td>
<td>1968</td>
<td>49</td>
<td>M</td>
<td>Left dilated pupil, neck stiffness</td>
<td>(-)</td>
<td>P3 Bilat.</td>
<td>Subtemporal</td>
<td>No deficit</td>
</tr>
<tr>
<td>Ishihawa</td>
<td>1974</td>
<td>40</td>
<td>M</td>
<td>Headache, right hemianopsia</td>
<td>(+)</td>
<td>P3 L</td>
<td>Temporocerebral</td>
<td>ICH</td>
</tr>
<tr>
<td>Pia</td>
<td>1976</td>
<td>43</td>
<td>F</td>
<td>Blindness, sudden coma</td>
<td>(+)</td>
<td>P3 L</td>
<td>Occipital</td>
<td>Occ. lobe resection</td>
</tr>
<tr>
<td>Yaşargil</td>
<td>1977</td>
<td>45</td>
<td>M</td>
<td>Right hemianopsia</td>
<td>(+)</td>
<td>P3 R</td>
<td>Occipital</td>
<td>Transient hom. hemianopsia</td>
</tr>
<tr>
<td></td>
<td>1978</td>
<td>46</td>
<td>M</td>
<td>Confusion</td>
<td>(-)</td>
<td>P3 R</td>
<td>Occipital</td>
<td>No deficit</td>
</tr>
<tr>
<td></td>
<td>1979</td>
<td>44</td>
<td>M</td>
<td>Left hemiparesia, ataxia</td>
<td>(-)</td>
<td>P3 R</td>
<td>Occipital</td>
<td>No deficit</td>
</tr>
<tr>
<td>Chang</td>
<td>1985</td>
<td>43</td>
<td>F</td>
<td>Neck stiffness</td>
<td>(+)</td>
<td>P3 R</td>
<td>Subtemporal</td>
<td>Left hem. hemianopsia</td>
</tr>
<tr>
<td>Ishibashi</td>
<td>1989</td>
<td>67</td>
<td>F</td>
<td>Headache, vomiting, right homonymus hemianopsia</td>
<td>(+)</td>
<td>P3 L</td>
<td>Occipital</td>
<td>No deficit</td>
</tr>
</tbody>
</table>

REFERENCES