The Factors Required for V-P Shunting in Children with Posterior Fossa Tumors

Posterior Fossa Tumor Olan Çocuklarda V-P Şant Takilmasını Gerektiren Unsurlar

SAIM KAZAN, CEM AÇIKBAŞ, İZZET DEMİREZ, RECAİ TUNCER, METE S AVEREN

Abstract: The factors for recommending postoperative V-P shunt insertion in twenty-eight pediatric patients, previously operated on for posterior fossa tumor, without V-P shunt preoperatively are investigated in this study. Age, sex, the preoperative duration for high intracranial pressure (ICP) signs, the preoperative hydrocephalic index, tumor size, tumor location, the extent of tumor resection, the use of external ventricular drainage (EVD) and its duration, postoperative ICP records, complications and histopathological diagnosis between the groups with and without V-P shunt are collected and compared. In 8 (28.57 %) of cases, V-P shunt was inserted in the postoperative period. Young age at diagnosis, the extent of tumor resection, prolongation in EVD duration and postoperatively high ICP levels are found to be statistically significant factors for shunt insertion in the postoperative period.

Key Words: Pediatric, posterior fossa tumor, V-P shunt

Özet: Bu çalışmada, posterior fossa tümörü nedeniyle opere edilmiş ve preoperatif V-P şant takılmamış yirmisekiz çocuk hastada, postoperatif dönemde V-P şant takılmasını gerektiren faktörler araştırılmıştır. V-P şant takılan ve takılmayan gruplar yaş, cinsiyet, preoperatif intrakranial basınç (IKB) artımı belirtilerinin süresi, preoperatif hidrosefalik indeks, tümör büyüklüğü, tümör lokalizasyonu, tümör çıkarımının miktarı, eksternal ventriküler drenaj (EVD) kullanımı ve süresi, postoperatif IKB kayıtları, komplikasyonlar ve histopatolojik tanı yönünden karşılaştırılmıştır. Sekiz (% 28.57) olguda postoperatif dönemde V-P şant yerleştirilmişdir. Postoperatif dönemde şant yerleştirilmemesinde istatistiksel faktörler olarak tanı yaşının küçük olması, tümör çıkarımının genişliği, EVD süresinde uzama ve postoperatif yüksek IKB seviyeleri önemli bulunmuştur.

Anahtar Sözcükler: Çocuk, posterior fossa tümörü, V-P şunt

INTRODUCTION

In contrast to adults, the majority of central nervous system tumors of childhood are located infratentorially (9). The proximity to the fourth ventricle, and therefore, the cerebrospinal fluid (CSF) pathways, predisposes children with posterior fossa tumors to the development of obstructive hydrocephalus (7, 15, 18). Therefore, there are chronic or acute signs of raised intracranial pressure due to obstructive hydrocephalus in most of the pediatric patients with a tumor in the posterior fossa. As a result, some patients with posterior fossa tumors will require a CSF diversion procedure at some time during the course of their illness (1, 2, 3, 7, 10, 13, 16). Various treatments have been reported including multiple ventricular taps, insertion of external ventricular drains, internal CSF shunts for initial therapy of hydrocephalus. It has also been reported that precraniotomy CSF shunting with a waiting
period of one or two weeks between the insertion of
the shunt and the removal of the posterior fossa
tumor (PFTm) results in a better operative field and
a lower level of morbidity and mortality (2, 14).

However, permanent CSF shunting prior to
tumor resection is not without complication. Upward
transient herniation, tumor haemorrhage,
shunt malfunction, infection, abdominal problems,
and systemic metastases due to shunting are known
complications (4,8,11,12). Additionally, an important
problem, prerecaniometry shunting resulted in all of
the patients becoming either shunt dependent or at
least having a permanently inserted shunt after
undergoing surgery for PFTms (14, 17).

It is well known that a resolution of
hydrocephalus occurs after PFTm resection in most
pediatric patients. Therefore, prerecaniometry
shunting in all patients with PFTms is not necessary.
An alternative method for treatment of
hydrocephalus is to find the patients' group that will
require shunting. The approach taken at our clinic
has been to avoid the placement of a permanent
preoperative shunt. Thus, we have analyzed for pre-,
intra-, and postoperative factors that are predictive
for permanent shunt requirement.

MATERIAL AND METHODS

Between 1992 (January) and 1996 (April), the
pediatric patients (< 16 years old) who underwent
surgery for PFTms were evaluated to find which
factors were associated with the necessity for post-
operative ventriculo-peritoneal (V-P) shunt
placement. The patients who had brain stem tumors
and placed V-P shunt prior to tumor resection were
excluded from this study. Twenty-eight pediatric
patients with PFTms were included in the study.

The cases were assessed in two groups. 1. The
patients that had a V-P shunt placed after tumor
resection or 2. The patients that did not have a V-P
shunt placed. Clinical studies included analysis of
the following parameters: Age at diagnosis, gender,
presence and duration of raised intra-cranial pressure
symptoms in the pre-operative period, pre-operative
hydrocephalic index and tumor size (Fig. 1), tumor
location (midline or hemispheric), extent of tumor
resection [according to operative reports and/or
computed tomography (CT) scan findings carried out
during the first post-operative 72 hours or at one
month; subtotal tumor resection had a visible tumor
remaining, and gross total resection had no visible
residual tumor], application and duration (days) of
external ventricular drain (EVD), post-operative
intra-ventricular pressure (IVP) course,
hystopathologic diagnosis and post-operative
complications. The Mann-Whitney U test and the t
test were used for statistical analysis.

All patients had a CT scan on admission.
Additionally, five patients had magnetic resonance
imaging. The CT scans were reviewed to assess the

Figure 1: Left: Method for measuring the preoperative hydrocephalic index on computerized tomography scans. We
calculated the maximum distance of the tips of the frontal horns (a) as a percentage of the maximum parenchymal diameter
(b-a) (Hydrocephalic index: a / b-a). Right: Method for measuring tumor size ratio. We calculated the maximum lateral
diameter of the tumor (c) as a percentage of the maximum width of the inner diameter of the posterior fossa (d) (Tumor size
ratio: c / d).
degree of hydrocephalus and tumor size. After the
diagnosis was established, dexamethasone was given
to all patients in the study. During PFTm surgery,
immediately prior to opening the posterior fossa
dura, the ventricular catheter was inlet into the lateral
ventricle of the patients that had ventricular
dilatation by a right occipital burr-hole. The
ventricular catheterisation and IVP monitoring were
carried out in 24 patients. The ventricular catheter
was connected with a three-way connector associated
with EVD and IVP monitoring device (Transpague-
1, Siemens, Sirecust-730, Germany). Initially, 10-20
ml of CSF was removed intra-operatively for a slack
posterior fossa. We attempted a total tumor resection
using a microsurgical technique and an ultrasonic
aspirator. Internal shunts such as aquaductus
canulation or ventriculo-cisternal catheterisation
were not used. The type of dural closure was water
tight with or without autogenous dural graft. Proflactic
antibiotic was used in all cases. Antiepileptic drugs
were not used. Dexamethasone was gradually
diminished in the post-operative period and was cut
off depending on the clinical condition of the patient.
Between 2-7 days in the post-operative period, CSF
was drained by EVD, and IVP was also monitored.

Our criteria of V-P shunt placement following
PFTm resection included EVD dependence (if
prolonged IVP increases in spite of intermittent CSF
drainage and if it continues as clinical and
radiological hydrocephalus in the post-operative
period) or persistant pseudomeningocele.

RESULTS

Characteristics of the 28 patients are listed in
Table I. The mean age was 9.8 ± 3.9. In 15 (53.57 %)
of the cases, the tumor was in midline and in 13 (%
46.02) of the cases in hemispheric localisation. Gross
total resection was done in 67 % of the cases and
subtotal resection was done in 32 % of them.
Medulloblastoma in 39 % and astrocytoma in 35 % of
the cases were the final histopathological diagnosis.

Eight (28.57 %) of the cases were shunted
postoperatively. Statistically significant factors
between the groups, which were either shunted or
not, are listed in Table II. In Table III other factors
which were not statistically significant are listed.
Young age at diagnosis, prolongation in EVD time
and high ICP levels postoperatively (EVD dependent
group) and subtotal resection were found as
properties in shunted group with the statistically
significant results.

DISCUSSION

With the posterior fossa tumor associated
hydrocephalus, we may be faced with two different
conditions; the clinical-pathological signs of the
tumor itself and/or the hydrocephalus (14). In most
of the cases as hydrocephalus might cause the initial
That in most of the cases with posterior fossa tumor, there appeared regression in hydrocephalus following tumor resection has previously been reported (7,14,15,16). Early diagnosis with computed tomography/magnetic resonance imaging, perioperative use of corticosteroid and total tumor removal may result in avoiding unnecessary shunt insertion and reducing complications related to the shunting. In this respect, to detect the shunt-dependent patient group first of all and to use shunting for them afterwards may be an alternative method particularly for the therapy of hydrocephalus following posterior fossa tumor surgery.

In our study, young age at diagnosis was found as a significant predictor for postoperative shunting. Nevertheless, young age correlates with shunting in previously reported literatures (6, 13). Lee et al. (13) stated that the parallelism with young age and shunting is related to the high grade of the tumor in most of the cases. Additionally, congenital tumors causing alternation in CSF dynamics and, thus, damaging CSF pathways which were found in younger age with high incidence could be another explanation.

In this study, postoperative EVD dependence is found to be a determining factor for permanent shunt insertion. Intra-post-operative EVD, IVP monitoring and the use of corticosteroid are known as effective factors for the treatment of hydrocephalus following posterior fossa tumor surgery (15,18). IVP monitoring maintains a safe postoperative period and also determines EVD dependence which has proved to be a reliable factor for subsequent shunt insertion in previous literatures. IVP monitoring can reduce EVD duration and its possible complications in patients who do not require shunt. Besides this, intermittent CSF drainage via EVD can avoid aseptic meningitis and subsequent hydrocephalus by purifying blood and blood products from the ventricular system.

Another factor which predicts postoperative shunt insertion following posterior fossa surgery is the subtotal tumor removal. In our study, 84 % of the patients did not need shunt insertion following gross total tumor removal. Two physiopathologic mechanisms are responsible for subsequent hydrocephalus after surgery in spite of total tumor removal and/or observation of release in obstruction of CSF pathways (5). Existence of abnormal fibrinogen and its transformation to fibrin at the level of Pacchioni bodies in CSF at the initial term could cause resistance to CSF flow and may result in communicating hydrocephalus. Subarachnoid adhesion formation may be another probable predisposition factor for hydrocephalus in delayed term. Another explanation is that when the ependymal surface of the fourth ventricle, particularly in the
region of the aqueduct, is disturbed during tumor removal, the risk of postoperative hydrocephalus requiring a shunt is significant (10).

In conclusion, young age at diagnosis, postoperative EDV dependence and high ICP records, and subtotal tumor removal are found as predictor factors for shunt insertion. Therefore, radical resection should be performed especially in midline tumors and dura mater should be tightly closed. Furthermore, during the postoperative period, EVD dependence could be easily determined by IVP monitoring via EVD.

Correspondence: Saim Kazan
Akdeniz Universitesi
Tıp Fakültesi
Nöroşirürji Anabilim Dalı
07070, Antalya, Turkey

REFERENCES