Subependymoma of the Lateral Ventricles: Report of Two Cases

Lateral Ventrikül Subependimoması: İki Vaka Sunumu

BILGE BILGIÇ, NESİMİ BÜYÜKBABANI, SEMRA VURAL, ÇİÇEK BAYINDIR

Istanbul University, Istanbul Medical Faculty, Department of Pathology

Abstract: Subependymoma is a rare benign tumor of the ventricular system. It was described as a distinct entity by Scheinker in 1945. The fourth ventricle is the most common location. Many cases are asymptomatic and discovered at autopsy. Symptomatic cases often present with hydrocephalus. We present two cases of subependymoma located in lateral ventricles.

Case 1 was a 69-year-old male with non-Hodgkin's large B-cell lymphoma. He died following seizures and respiratory depression while he was receiving chemotherapy. At autopsy brain oedema and a small nodular mass located in the right lateral ventricular wall were discovered.

Case 2 was a 38-year-old female presenting with headache. MR revealed a mass, approximately 2.5cm in diameter in the right lateral ventricle extending to the third ventricle. Both tumors were diagnosed as subependymoma.

Microscopically, a fibrillary background, cell clusters with small uniform nuclei and microcysts were the main histopathological characteristics. Microcysts contained slightly basophilic material stained with alcian blue pH2.5 and toluidine blue pH7. This material was interpreted as extracellular mucin. Tumoral infiltration was positive for GFAP and S-100 protein. Ki-67 (MIB-1) proliferation index was lower than 1%. P53 was negative in both cases.

Key Words: Subependymoma, autopsy, lateral ventricle, mucin, p53

Anahtar Kelimeler: Subependimom, otopsi, lateral ventrikül, müsin, p53.
INTRODUCTION

Subependymoma is a rare benign glial tumor of the ventricular system.

The fourth ventricle is the most common location. They are often found incidentally at autopsy in elderly patients. Symptomatic cases occur primarily in middle-aged patients and often present with hidrocephalus.

Prognosis is good even with subtotal resection (1, 23).

We present a symptomatic case of subependymoma and an incidental case found at autopsy.

CASE 1:

A 69-year-old male was admitted to hospital in January 2001 with complaints of weight loss and fatigue. Following physical examination and laboratory investigation, cervical lymph node and trephine bone marrow biopsies were performed. Both material showed neoplastic infiltration. Histopathological diagnosis was a large B-cell non-Hodgkin’s lymphoma rich in T-cells. The bone marrow was infiltrated by the same tumor. The patient received a regimen of CHOP chemotherapy and his status began to improve clinically. Three weeks after the first chemotherapy he developed focal seizures and soon after a respiratory depression. Following intubation and anticonvulsive therapy spontaneous breathing was achieved. A few days later the convulsive status reappeared and the patient died. In this period MR and CT revealed no infiltration or hemorrhage.

To explain his neurological status a brain dissection was done. The brain was fixed in 10% formalin for 4 weeks. The fixed brain weighed 1500g. It was cut in 1cm thick coronal slices. Macroscopically, no hemorrhage or mass lesion was detected. The brain was heavy and oedematous. A small nodular lesion, 0.8 cm in diameter was observed in the anterior horn of the right lateral ventricle (Fig 1).

The tumor was attached to the ventricular wall, well circumscribed with no infiltration of the brain parenchyme.

CASE 2:

The patient was a 38-year-old female. She complained of headache for 2 months and MR examination revealed a mass in the right anterior horn of the lateral ventricle which was extending to the 3rd ventricle (Fig 2).

Figure 1: A nodular mass attached to the ventricular wall in case 1

Figure 2: Radiological appearance of the tumor in case 2
Clinical diagnosis was a neurocytoma or a subependymal giant cell astrocytoma.

The lesion was removed gross totally and measured 3x1.8x1cm. The patient has no complaints or recurrence after 6 months.

MICROSCOPICAL FINDINGS

Both tumors had a similar morphology. An infiltration of uniform, small cells having round to oval nuclei was seen. The background was fibrillary and numerous microcysts with basophilic secretory material were observed (Fig 3,4). This was stained positively with alcian blue pH 2.5, toluidine blue pH 7.

Necrosis and mitosis were not found. Cytological atypia was minimal.

Hemosiderin deposition and calcification were not seen. GFAP and S-100 protein were diffuse positive. MIB-1(Ki-67) proliferation index was lower than 1% and p53 (clone D07) was negative in both cases.

DISCUSSION

Subependymoma is a rare benign glial tumor (WHO grade 1). Ultrastructural studies indicate an origin of subependymal layer (11, 18, 22). Some authors suggest that this lesion could be more likely a hamartoma rather than a tumor because of a very low MIB-1 index and lack of telomerase activity (3, 22). The association of subependymoma with another brain tumor or malformations was reported by several authors and they thought that this might have shown that this lesion could be reactive in nature (7, 20, 22, 24, 26).

Case 1 had a large B- cell non-Hodgkin’s lymphoma without CNS involvement and a subependymoma coincidentally. A patient who died of colon carcinoma with an incidental subependymoma was reported by Ma (14). The main location of subependymoma is the fourth ventricle followed by lateral ventricles, septum pellicidum, cerebral aquaductus and proximal spinal cord (1, 15, 22, 23). In our two cases, it was located in the anterior horn of the right lateral ventricle. The tumor in the 2nd case was extending through foramen Monroe to the 3rd ventricle. The mean age of symptomatic cases is about 35-40 and elderly patients are affected in asymptomatic cases. Our cases showed this characteristic age distribution. Histopathologically subependymoma has a characteristic morphology: clusters of cells with uniform small nuclei and fibrillary background. Microcysts, calcification, hemosiderin deposition, sclerotic vessels are common features(5, 22). A subependymoma with melanin pigment was also reported(21). Rare cases having an ependymal component with perivascular rosettes and pseudorosettes were described (1, 12). Presented cases had the characteristic appearance of subependymoma. Numerous microcysts
containing basophilic material were observed. This secretory material was stained positive with alcian blue pH 2.5, toluidine blue pH 7 and therefore interpreted as extracellular mucin. There are few tumors in central nervous system with mucin production. Most of them are rare case reports such as a cellular ependymoma, a medulloblastoma, dysembryoblastic neuroepithelial tumor, choroid plexus papilloma and meningioma. Myxopapillary ependymoma is a well known entity with mucin production (4, 9, 16, 25). A recently described entity with 3rd ventricular location the so-called chordoid glioma also has shown to contain extracellular mucin (2). Subependymoma is accepted as a slow growing benign grade I tumor. However the presence of cytological atypia and mitosis has been reported (12, 17). Although no remarkable difference was found between “the pleomorphic variant” and the classical group concerning the behaviour, the possible existence of a more aggressive variant should be considered in the differential diagnosis.(17). Differential diagnosis may include tumors with ventricular location. Neurocytoma is synaptophysin positive. Subependymal giant cell astrocytoma consists of spindle and epithelioid cells having vesicular nuclei and prominent nucleoli. Sarcomatous differentiation is a very uncommon feature of subependymoma, which was described only twice in the literature (13, 27). Tomlinson reported a 52 year-old male with a 4th ventricular mixed tumor consisting of subependymoma and rhabdomyosarcoma. Louis described sarcomatous change in a recurrent subependymoma after 18 months following radiotherapy (27).

Surgical treatment is indicated in symptomatic cases (15). Tumors locating in lateral ventricles usually allow complete resection and in most cases no recurrence was observed (8, 12, 15). Even with partial resection the prognosis is good (6, 19).

Radiotherapy is not indicated; it should be reserved for recurrent, infiltrative lesions.

A rare case of subependymoma in an infant with possible complication of radiotherapy was reported. In this case radiotherapy was administered at 1 year of age. She developed neurologic and mental complications. When she died of cardiovascular failure at the age of 21, more than 20 multiple meningiomas were found at autopsy (10).

In conclusion we present two rare cases of ependymomas with different clinical presentation but with similar histopathological features. In a ventricular tumor, subependymoma should be included in the differential diagnosis.

Correspondance: Bilge Bilgiç, M.D.
Istanbul University, Istanbul Medical Faculty, Department of Pathology
34390 Çapa Istanbul-Turkey
Fax : 0 212 6311367
E-mail: eminbilgic@superonline.com

REFERENCES
9) Kasantikul V, Shuangshoti S. Cerebellar medulloblastomas: a study of 35 cases with
particular reference to cellular differentiation. Surg
Neurol 26(6): 532-541, 1986
10) Kurihara M, Kumagai K, Watanabe M, Yagishita S.
An autopsy case of a subependymoma in infancy and
dulti meningiomas in adulthood: problems of
using radiation therapy for brain tumors in infancy.
No To Hattatsu 27(3): 246-250, 1995
11) Lach B, Russell N, Benoit B. Atypical
subependymoma of the spinal cord: ultrastructural
immunohistochemical studies. Neurosurgery 27(2):
319-325, 1990
12) Lombardi D, Scheithauer BW, Meyer FB, Forbes GS,
Shaw EG, Gibney DJ, Katzmann JA. Symtomatic
subependymoma: a clinicopathological and flow
13) Louis ON, Hedley-Whyte ET, Martuza RL.
Sarcomatous proliferation of the vasculature in a
subependymoma: a follow-up study of sarcomatous
differentiation. Acta Neuropathol 80(5): 573-574,
1990
14) Ma TK, Ang LC, Mamela M, Kish SJ, Young B,
Lewis AJ. Narcolepsy secondary to fourth
ventricular subependymoma. Can J Neurol Sci 23(1):
59-62, 1996
Basso De Caro M. Symtomatic subependymomas of
the lateral ventricles. Report of eight cases. Clin
16) Maruyama R, Koga K, Nakahara T, Kishida K,
Nabeshima K. Cerebral myxopapillary
17) Matsumura A, Ahyai A, Hori A, Schaake T.
Intracerebral subependymomas. Clinical and
neuropathological analyses with special reference to
the possible existence of a less benign variant. Acta
18) Moss TH. Observations on the nature of
subependymoma: an electron microscopic study.
19) Nishio S, Morioka T, Mihara F, Fukui M.
Subependymoma of the lateral ventricles. Neurosurg
Rev 23(2): 98-103, 2000
20) Piatt JH Jr, D’agostiano A. The Chiari II
malformation: lesions discovered within the fourth
21) Rosenblum MK, Erlandson RA, Aleksic SN,
Budzilovich GN. Melanotic ependymoma and
1990
22) Ryken TC, Robinson RA, Van Gilder JC. Familial
occurence of subependymoma. J Neurosurgery 80:
1108-1111, 1994
23) Scheithauer BW, Burger PC. Atlas of Tumor
Pathology. Tumors of Central Nervous System. Eds.
Rosai J, Sobin LH. Armed Forces Institute of
Pathology, Washington DC, 1994
24) Singh M, Corboy JR, Stears JC, Kleinschmidt-De
Masters BK. Diffuse leptomeningeal gliomatosis
associated with multifocal CNS infarcts. Surg Neurol
Myxopapillary ependymoma of the filum terminale.
A light and electron microscopic study. Cancer 58(2):
310-317, 1986
26) Tolnay M, Kaim A, Probst A, Ulrich J.
Subependymoma of the third ventricle after partial
resection of a craniopharyngioma and repeated
63-66, 1996
27) Tomlinson FH, Scheithauer BW, Kelly PJ, Forbes GS.
Subependymoma with rhabdomyosarcomatous
differentiation: report of a case and literature review.