Dynamic Stabilization of the Spine: A New Classification System

Omurganın Dinamik Stabilizasyonu: Yeni Bir Sınıflandırma Yöntemi

ABSTRACT

Fusion surgeries are still the gold standard in the treatment of the degenerative spine. Spinal fusion has some problems, however. Adjacent segment disease, donor place ailment, and the morbidity of the surgery has emerged as important problems over the years. As a consequence of such complications after fusion, the search for an alternative treatment for the degenerative spine widened. While trying to maintain the motion in the joint, dynamic stabilization aims to remove the pain by distributing the weight between anterior and posterior elements of the spine. Various new devices have now been developed for the dynamic stabilization of the spine. In this report, the dynamic stabilization devices of the spine are classified anew and, the authors explain briefly the historical evolution process, specialties, indications and contraindications of these dynamic stabilization devices.

KEYWORDS: Dynamic stabilization, Classification, Lumbar spine, Disc prosthesis, Facet replacement, Interspinous device

ÖZ

ANAHTAR SÖZCÜKLER: Dinamik stabilizasyon, Sınıflandırma, Lomber omurga, Disk protezi, Facet protezi, Interspinous cihaz
INTRODUCTION

Since Mixter and Barr performed the first lumbar discectomy surgery in 1934, it has been understood that a ruptured intervertebral disc can cause low back pain with radiation down to the leg by forming a herniation that pressures the nerve roots (5,47,48). Although the initial procedure was hailed as a landmark success, postoperative failures and negative surgical results began to emerge with growing frequency. Later, numerous scientific clinical studies revealed that negative results or failure in the range of 20-30% were possible in the treatment of lumbar disc herniations (10,12,21,46,47).

In 1982, it was claimed that disc degeneration, like herniation, might cause low back pain (40). Relief from pain was observed in patients with low back pain when local anesthesia was applied to degenerative discs. Such observations were supported by continued scientific publications. While some studies sought to determine how the disc degenerations occur and cause pain, others tried to develop various methods for treating the pain that results from a degenerative disc.

There have been two essential advancements that have furthered the understanding of disc-related pain. The first advancement was the introduction of discography as a diagnostic method in the clinic (31). Although discography was initially criticized for not being as sensitive or as fine as myelography, its importance has increased with time, since there is not any better study to reveal the internal structure of the disc. Although the reliability of discography results is rightfully debated, it is still used widely. The second advancement is MRI technology. The data on disc structures, ligament structures and soft tissue structures are priceless in shedding light on lumbar disc pathology. Moreover, the knowledge gained concerning spine mechanics, spine motions, and the emergence of the acute and chronic instability concepts helped us to understand the importance of sustaining spine stability.

Today, it is known that disc degeneration other than herniation also decreases the quality of life by causing chronic low back pain (40,42,55,62). The largest common mistake is treating such pathologies by removal with classical or microdiscectomy techniques, which causes pain as a result of segmental instability (19,40). Such treatments have resulted in serious problems and raised the level of skepticism concerning disc hernia operations among physical therapists and in general society.

Over time, it was revealed that the degree of clinical condition after subtotal lumbar discectomy was closely related with the degree of disc degeneration and the existence of sufficient paravertebral muscle support. If the disc was excessively degenerated, with no muscle support, results were poor. It has been reported in various publications that low back pain sometimes prevails long after subtotal discectomy surgery (19,28). Moreover, patients with a black disc experience back cramps and frequent pain in the lower back. Since performing a discectomy causes deformation in the disc, such a situation may worsen or be easily triggered after lumbar discectomy surgery. A disc’s structure suffers serious degeneration if a subtotal discectomy is performed in order to prevent recurrence and as much tissue as possible is taken out. Even if we relieve the patient from radicular pain, discogenic pain or pain resulting from segmental instability may occur (19,20,28). Such negative experiences with subtotal discectomy brought forth the idea of putting something else in place of a removed disc. Cloward proposed interbody fusion after classic discectomy for the first time (13). Although plausible in theory, the “Stop the movement and stop the pain” principal is not easy to achieve in practice. It is difficult to fuse moving systems, and, besides, if posterior affixed bone grafts escape to the canal, important complications may arise. Posterolateral intertransverse fusion gives positive results in young patients, but since bone quality is not as good in elder patients, the pseudoarthrosis rate is very high in the older group (3,7,14,17).

This limitation gave birth to the idea of performing a fusion and leaving the spine motionless. Harrington developed rods and then transpedicular screw fixation systems (29,56). Results were much better than in-situ fusion. Today, in the treatment of low back pain, fusion surgeries are still the gold standard. The problem is still not solved, however.

Spinal fusion has other problems. Adjacent segment disease, donor place ailment, and the morbidity of the surgery have emerged as important problems over the years (16,23,70). Besides, in spite
of perfect radiological fusion images, patients’ improvements were not always equal (8). Since fusion surgeries (where the injured joint is removed to relieve pain) were not solving the problem, perhaps distributing the load away from the deformed segment and maintaining motion was the answer. This was a novel and important opinion when it emerged.

Anterior Dynamic Stabilization

Anterior Disc Prosthesis

The idea of placing an anterior dynamic instrument belongs to Fernstrom. In his surgeries, he tried to maintain movement by placing steel balls in the intervertebral space (15). However, since the balls were touching the cartilage end plates at a point, the balls slowly broke the cartilage end plates and burrowed into the intervertebral space. Over time, then, movement ceased. It was an early practical step towards maintaining movement. Laboratory and animal research has yielded hundreds of patents since then, however, the first modern prosthesis, named CHARITE, was designed and used in humans by Katrin Butner Janz (11). Although complications and revisions were very common during initial years, Charite III took its final form and is now widely used clinically. Charite III was certified by the FDA in October of 2004 (27).

At the beginning, a shock absorbent intermediate material was used in the Charite disc. Later, the intermediate was replaced with a polyethylene pillow in order to reduce metal-on-metal friction and to facilitate smooth movement. According to type, rotational movement is allowed, limited, or completely restricted. Today, there are several certified brands in the market available to use. A literature review showed that indications for use can be summarized shortly as: patients between 18-60 ages (optimally below age 50 years) with a single or two level pain due to symptomatic degenerative disc disease, patients with positive provocative discogram, the absence of facet joint degeneration changes, existence of intervertebral disc height of at least 4 mm, non radicular leg pain or back pain and postlaminectomy syndrome (6,45). It has contraindicated in deformations and spondylosis in the posterior elements, in shift instabilities, the elderly patients who have osteoporosis, morbid obesity, infection and patients with systemic diseases such as allergy to metal (6,45). Therefore, it has very limited usage. Since it maintains movement, it is recommended for use at L4-5. L5-S1 application showed abnormal physiology (57,60). When it is used within the indications, results are very satisfactory. In new prospective clinical study patients did not show any morbidity, and patient satisfaction was very high (57). The most criticized aspects are the lack of elasticity, or a shock absorbent feature, and the limited application area.

Alternative Nucleus Replacements

PDN, The Prosthetic Disc Nucleus (PDN-Solo, Raymedica Inc, Minneapolis, MN): It assumes the cushioning function of a normal disc, and concurrently maintains disc height and flexibility. This device consists of a hydrogel pellet surrounded by a polyethylene layer (41). Clinical study results with PDN are badly (51,58). Therefore, nowadays usage of PDN is limited.

NUBAC, Disc Arthroplasty System (Invibio, Greenville, NC, USA): This newly developed device, which will be used for arthroplasty, should maintain or restore the disc height and mechanical function of the disc. This device is a less invasive and non-bridge-burning disc arthroplasty system. There is one study in the literature. This study is preliminary report and according to this study disc height improved but lumbar motion did not improve (2).

DASKOR, Disc Arthroplasty System (Disc dynamics, Inc, Eden Prairie, MN; Investigational status): This is a balloon device filled entirely with an injectable, pressurized polyurethane polymer (66). In a new prospective nonrandomized multicenter study, it was seen that dascor device may be a safe and effective less-invasive surgical option for a patient with degenerative disc disease (1).

Posterior Dynamic Stabilization

Pedicle Screw/Rod Based Stabilization Devices

The Graf ligament, designed and named by Henry Graf in 1992, is used firstly in spine stabilization (24). Graf drew wide attention and his concept has since gained popularity (22,33,34). Meanwhile, important technological advances occurred. Graf was against risky surgeries (such as fusion) for the treatment of pain due to instability as a result of degenerative events. He thought such
surgeries were too dramatic. He advocated that a supporting posterior extension band was good enough in the treatment of such instabilities. Patient series related to the Graf ligament were published constantly. Some were in favor of the procedure (22,32,34,43,48) and some were against it (4, 54). However, approaches emerged to deal with encountered troubles such as the loosening of the ligament with time, foraminal narrowing as a result of compression, and flat back (25). The literature is full of examples of recurrent instability as a result of screw loosening in time (33).

Although it was a fine concept, the system had weaknesses and could have been better designed. In fact, after considering the weak points and disadvantages of the Graf ligament, Zimmer developed the Dynesys system (39,61). In Dynesys, artificial ligaments were used, however, a spacer was implemented between pedicular screws so that foraminal compression was avoided. The most important point was to calibrate the tightness of the ligament. The lack of standard implementation and the fluctuation from surgeon to surgeon presented a problem. Overly-tight ligaments behaved just like rigid rods. Dynesys is certified by FDA only for stabilization of spinal segments as an adjunct to fusion in 2004 not as a motion-preserving implant and is widely used by the practitioners who believe in dynamic stabilization all over the world (33,59,67). Just like there are supporters of Dynesys, there also are the ayes (52,59,67).

There are proponents of fusion who claim that Dynesys has no superiority over fusion (8,26). To solve the standardization of ligament tightness problem, the Medtronic medical company tried to standardize the dynamism on rods. They produced the Agile rod, which has fixed flexion, extension, and rotation pace. However, after having predicaments in clinical applications, they took it off the market (65). This attempt at standardizing the rods’ movements opened the door for other companies to produce similar rods all over the world. Moreover, rods with flexion and extension abilities against various loadings have been manufactured. Peek and carbon fiber rods are dynamic and are mainly used to compress the bone graft in a fusion (30). More dynamic rods are produced in order to be used with rigid screws within dynamic concept limits (44). However, the ideal dynamic rod has not yet been produced.

The opinion of dynamic stabilization may also provide an advantage over rigid fixation when used as a posterior tension band complements in lumbar fusion surgery (44). According to Wolff’s law, the transmission of forces to an intervertebral graft and avoidance of “stress shielding” could potentially increase the rate and likelihood of a successful arthrodesis (18). Increased load transfer through the fusion mass should lead to a more favorable surroundings for fusion (63). This can be achieved with the development and use of flexible devices (63). In order to facilitate fusion, Strempel kept the graft between vertebral bodies under constant pressure by increasing axial loading on spine with the help of an added joint on the screw’s neck (68). Although long-term results revealed pseudoarthrosis in some patients, all patients were completely relieved of their pain. He continued using the system without performing fusion. According to the Louis concept, load stabilizes posterior articular columns from behind and the screw head rod locks are placed behind facet joints, which thus provides motion in facet joints. Posterior dynamic stabilization transfers the load through the posterior column and stabilizes the spine almost like a rigid stabilization technique, preserving motion (9). Even though such a system is said to be semirigid, we think that placing a joint on the screw is a stroke of genius. It is recommended to be used in one or two places; otherwise, the system loses its dynamism because of the rigid rod. However, when dynamism of the rod is increased, it can be used in multiple segments; such development would be a huge leap in the field of deformity surgery. In a new prospective clinical study dynamic rod and hinged screw case series results are promising (35,36,37,38). We compared dynamic stabilization to fusion surgery in one level and our results supported dynamic stabilization that is superior to fusion surgery in the treatment of degenerative instabilities (49).

Such developments in posterior transpedicular dynamic systems directed researchers towards more complicated systems. Posterior dynamic systems have more application area than anterior disc prostheses. In order to use anterior disc prosthesis in either cervical or lumbar spine, the ideal indication requires patient age of 20-50, healthy posterior components, and a disc distance not less than 4mm. Moreover, it is recommended to be used in one or
two intervertebral spaces (6,45,57). Posterior dynamic systems can be used in all ages, deformity in posterior components does not effect the indication (on the contrary, it removes the deficiency in laminectomy and facetectomy patients), and it is not affected by progressive degeneration of anterior components. With its extensive application area, it is an option for a wide group of patients. For all these reasons, complicated instruments in accordance with the original anatomy are being planned.

The most important advantage of posterior dynamic systems is providing a healthy load transfer to the lower spine in chronic instabilities. That is the reason for pain relief. In reality, there is no harm if the system fuses in time. Patient feels no pain in this process. There is no such thing as absolute motion in every joint for a whole human life. As organisms get older, joint mobility gradually decreases. As a result, there is no need to blame the dynamic system that is adaptive to the movement for decreasing or stopping motion in the joint. In our judgment, the real mistake would be designing an instrument with infinite physiologic movement, assuming a normal functional segment would remain normal in a lifetime. A system with 4º flexion and extension at an age of 30, while considered to be normal, would not be normal at age of 70; it would be considered to be hypermobile.

Total Facet Replacement System

The Tops system was the first to be used in clinical trials. TOPS, TFAS and ARFS are a total facet arthroplasty system and differ from the remaining dynamic stabilization devices (65). After removing the facets, flexion, extension, and controlled transverse motion, are provided by a mechanism that is placed on two connection rods over transpedicular placed screws. It was promising at the beginning; however, difficulties in its application and the lack of published successful clinical results have prevented it from becoming widespread. Still, similar systems are being developed for clinical trials (39).

Posterior Interspinous Distractor devices

The French orthopedist Senegas thought that he could partially improvise a vertebral column and improve patients’ clinical view in degenerative spondylolystesis patients by distracting spinal processes and widening the canal. He developed the Wallis system (64). Clinical applications gave successful results. Since it is very easy to apply locally, it became popular all over the world and is widely used. Many similar systems were designed later on. X-Stop is the most widely used interspinous implant (65). This titanium spacer device can be used a minimally invasive approach under local anesthesia; so especially elderly patients with medical comorbidity can consider good candidates for this device (65). Since there is no spinous extremity in S1, it cannot be used in L5-S1. Also, there are no usage indications other than for the lumbar level. An in vivo study with MRI scans showed that the implant widens the spinal canal and the neural foramina (53). Biomechanical studies determined that, while correcting the shift in the vertebral column, interspinous processes reduce and facilitate load transfer by forming a rigid bridge in the back (69). Therefore, it is also used in black disc with pain and after discectomies that show a risk of instability development (69). Possible concerns for this implant are its effects on bone tissue and the possible creation of local osteoporosis in the placement area. It is also effective for a limited time only. It is an ideal solution for the elderly with concomitant medical problems.

The summary of indications and contraindications of dynamic devices are given Table I.

As a result, Dynamic stabilization systems can be categorized as follows:

I) Anterior Dynamic Stabilization

A. Anterior disc prosthesis (Total Disc Replacements)

1. Cervical Disc Replacements (Figure 1A,B,C)
 - Prestige ST (Medtronic, FDA Cleared)
 - Bryan (Medtronic)

![Figure 1: Cervical Disc Replacements: A) Prestige ST, B) Bryan, C) Prodisc-C.](image)
Table I: Dynamic Stabilization of the Spine: Indications and Contraindications (6,22,24,33,39,48,61,65,68,69)

<table>
<thead>
<tr>
<th>Devices</th>
<th>Indications</th>
<th>Contraindications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anterior Disc Prosthesis</td>
<td>• patients between 18-60 ages (optimally below age 50 years)</td>
<td>• deformations and spondyloysis in the posterior elements</td>
</tr>
<tr>
<td></td>
<td>• single level or two level</td>
<td>• in shift instabilities</td>
</tr>
<tr>
<td></td>
<td>• pain due to symptomatic degenerative disc disease</td>
<td>• the elderly patients who have osteoporosis</td>
</tr>
<tr>
<td></td>
<td>• absence of facet joint degeneration changes</td>
<td>• morbid obesity</td>
</tr>
<tr>
<td></td>
<td>• existence of intervertebral disc height of at least 4 mm</td>
<td>• infection</td>
</tr>
<tr>
<td></td>
<td>• nonradicular leg pain or back pain</td>
<td>• patients with systemic diseases such as allergy to metal</td>
</tr>
<tr>
<td></td>
<td>• postlaminectomy syndrome</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• patient with positive discogram</td>
<td></td>
</tr>
<tr>
<td>Posterior Dynamic Stabilization Devices</td>
<td>• degenerative spinal instability (disc degeneration, facet degeneration, degenerative spondylolisthesis)</td>
<td>• overt instabilities due to tumors and trauma</td>
</tr>
<tr>
<td></td>
<td>• iatrogenic instability following discectomy/decomp-ressive laminectomy</td>
<td>• infections</td>
</tr>
<tr>
<td></td>
<td>• increased anterior load sharing to augment interbody fusion</td>
<td>• Istmic type spondylolisthesis</td>
</tr>
<tr>
<td></td>
<td>• stabilization of a painful adjacent segment degeneration, adjacent to fusion</td>
<td>• stabilizations extending beyond two segment</td>
</tr>
<tr>
<td></td>
<td>• complement TDR to achieve anterior disc replacement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• second recurrent of a disc herniation</td>
<td></td>
</tr>
<tr>
<td>Interspinous Distraction Devices</td>
<td>• central spinal canal stenosis with neurogenic cladiation</td>
<td>• overt instabilities</td>
</tr>
<tr>
<td></td>
<td>• foraminal stenosis with radicular symptoms</td>
<td>• Infections</td>
</tr>
<tr>
<td></td>
<td>• facet joint disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• In one- or two- level stenosis in patients over 50 years</td>
<td></td>
</tr>
</tbody>
</table>

- PRODISC-C (Synthes)
- PCM (Cervitech)
- Prestige LP (Medtronic)
- Discover (DePuy Spine)
- Cervicore (Stryker Spine)

2. Lumbar Disc Replacements (Figure 2)
- Charite (DePuy Spine, FDA Cleared)
- ProDisc-L (Synthes, FDA Cleared)
- Maverick (Medtronic)
- FlexiCore (Stryker Spine/Spine core)
- Regain (Biomet/EBI)
- TrueDisc PL (Disc Motion)
- Kineflex Lumbar Disc (Spinal Motion)

Figure 2: Maverick Lumbar Disc Replacement.
B. Nucleous Pulposus Alternatives (Figure 3A,B,C,D)
- PDN: (PDN-Solo, Raymedica, LLC)
- Nubac: (InviBio, Greenville, NC, USA)
- Daskor: (Disc dynamics, Inc, Eden Prairie, Minn)
- Neudisc: (Replication Medical Inc, New Brunswick, NJ)

C. Nucleous Pulposus Supports ‘Cultured cell re-injection’ (Figure 4A,B)
- Biodisc (Cryolife, Inc, Kennesaw, GA)
- NuCore IDN (Spine Wave Inc, Shelton, CT)
- Gelifex (Gelifex, Inc, Philadelphia, PA)

II) Posterior Dynamic Stabilization
A. Posterior transpedicular stabilization (Figure 5A,B,C,D,E,F)
 i. Pedicle screw-based system
 1. Dynamic rod-rigid screw
 a. Rod artificial ligament
 - Graf System (Surgigraft)
 - Dynesys (Zimmer spine Inc, Warsaw, IN)
 b. Rod dynamic metal
 i. Talin Rod (Medikon-Algoritma, Istanbul-Turkey)
 ii. Scient’X Isobar (Scient’x, S.A.)
 iii. Accuflex (Globus Medical Inc, Audubon, PA)
 iv. Transition Stabilization system (Globus Medical Inc, Audubon, PA)
 v. Bioflex (Biospine Corp, Seoul, Korea)
 vi. CD Horizon Agile (Medtronic Sofamor Danek, Memphis, TN)
 2. Dynamic Rod-Dynamic Screw (Figure 6A,B,C,D,E)
 vii. COSMIC (Ulrich GmbH & Co. KG, Ulm, Germany) or SAFINAZ (Medikon,Turkey) (9,68) hinged transpedicular screws applied with any one of aforementioned dynamic rods

ii. Total Facet Replacement Devices (Figure 7A,B)
- TOPS (Total Posterior arthroplasty System, Implant Spine, Princeton, NJ)
- TFAS (Total Facet Arthroplasty System, Archus Orthopedics, Inc, Redmond, WA)

- ARFS (Anatomic Facet Replacement System, Facet Solutions Inc, Logan, UT)
- STABILIMAX NZ (Applied Spine Technologies Inc, New Haven, CT)

B. Posterior Interspinous Stabilization (Figure 8A,B,C)
- DIAM (Medtronic Sofamor Danec, Memphis, TN)
- Wallis System (Abbott Spine, Inc., Austin, TX)
- X-stop interspinous process decompression device (Kyphon, Inc., Sunnyvale, CA)
- CoFlex (Paradigm Spine LLC., New York, NY)
- Flexus (Globus Medical Inc., Audubon, PA)
Figure 5: Posterior transpedicular stabilization: A) Graf system, B) Dynesys, C) Talin rod, D) Scient'X Isobar, E) Bioflex, F) CD horizon Agile.

Figure 6: Dynamic Rod-Dynamic Screw: A) Dynamic rod, B) Cosmic screw, C) Safinaz screw, D) lateral X-ray, E) AP X-ray.
Today, various dynamic stabilization devices have been produced but there is a need for biomechanical and clinical studies to show positive results. We believe that the future of dynamic stabilization devices is encouraging and, that this classification will explain the other classifications and new studies in the future.

REFERENCES

49. Özer AF, Crawford NR, Sasani M, Oktenoglu T, Bozkus H, Kaner T, Aydin S. Dynamic lumbar pedicle screw-rod stabilization: two year follow-up and comparison with fusion. The Open Orthopedics 4, 137-141, 2010

51. Pimenta L: PDN at 5 years follow-up , In: Spine Arthroplasty society; May 9-13; Montreal, Quebec, Canada; 2006: 82, 2006

60. Schulte TL, Lerner T, Hackenberg L, Liljengqvist U, Bullmann V: A Acquired spondylosis after implantation of a lumbar

