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ABSTRACT 

AIm: Based on the neuroprotective effect of either G-CSF or statins in various neurological disease models, the purpose of this study was to 
evaluate the superiority of combined therapy G-CSF with simvastatin in experimental intracerebral hemorrhage (ICH).  

MaterIal and Methods: Primary ICH was induced in male Sprague Dawley rats. G-CSF (50μg/kg), simvastatin (2 mg/kg), combined G-CSF 
and simvastatin, or phosphate buffered saline was given at 24 hours post-ICH. Neurobehavioral outcomes were assessed in all rats. The 
pathological changes of neuronal ultrastructure were examined with transmission electron microscopy at the given time. Simultaneously, 
immunohistochemical labeling and TUNEL assay were performed.     

Results: Co-administration of G-CSF with simvastatin significantly promoted functional recovery and expedited the recovery time. 
Transmission electron microscopy revealed that combination treatment significantly improved ultrastructural outcomes. Histological 
examination showed that the expressions of Brdu co-labeled with NSE and GFAP, Factor VIII were higher in combined treatment than in control 
group. Additionally, the number of cell apoptosis was higher in control group than in experimental groups and lowest in combination group.   

ConclusIon: Our results indicated that combination treatment of stroke with G-CSF and simvastatin augments the neuroprotective effect 
in rats after ICH.      

Keywords: Hematoma, Granulocyte-colony stimulating factor, Simvastatin, Rat   

ÖZ 

AMAÇ: Çeşitli nörolojik hastalık modellerinde G-CSF veya statinlerin nöroprotektif etkisi temelinde bu çalışmanın amacı deneysel intraserebral 
kanamada (ICH) kombine G-CSF ve simvastatin tedavisinin üstünlüğünü değerlendirmekti.  

YÖNTEM ve GEREÇLER: Erkek Sprague Dawley Sıçanlarında primer intraserebral kanama (ICH) indüklendi. ICH’den 24 saat sonra G-CSF 
(50μg/kg), simvastatin (2 mg/kg), kombine G-CSF  ve simvastatin veya fosfat tamponlu salin verildi. Nörodavranışsal sonuçlar tüm sıçanlarda 
değerlendirildi. Nöronal alt yapıdaki patolojik değişiklikler belirtilen sürede transmisyon elektron mikroskopisiyle incelendi. Aynı zamanda 
immünohistokimyasal etiketleme ve TUNEL testi yapıldı.      

BULGULAR: G-CSF’nin simvastatinle birlikte uygulanması işlevsel iyileşmeyi önemli ölçüde arttırdı ve iyileşme süresini kısalttı. Transmisyon 
elektron mikroskopisi kombinasyon tedavisinin ultrayapısal sonuçlarda önemli bir düzelme oluşturduğunu gösterdi. Histolojik incelemeler 
NSE ve GFAP, Faktör VIII ile etiketlenmiş Brdu ekspresyonlarının kombine tedavi grubunda kontrol grubundan daha yüksek olduğunu gösterdi. 
Ayrıca hücre apopitozu sayısı kontrol grubunda deneysel gruplardan yüksekti ve kombinasyon grubunda en düşüktü.   

SONUÇ: Sonuçlarımız inmenin G-CSF ve simvastatin ile kombinasyon tedavisinin sıçanlarda ICH sonrasında nöroprotektif etkiyi güçlendirdiğine 
işaret etmektedir.        
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INTRODUCTION

Spontaneous intracerebral hemorrhage (ICH) is by far the 
most destructive form of stroke that accounts for 10–15% 
of all stroke types and results in at least 30% mortality and 
long-term significant disability in survivors (12). Despite the 
advances occurred in the surgical and medical treatment, the 

clinical outcome of ICH has failed to demonstrate the very 
satisfactory improvement over recent decades (1). 

Granulocyte colony-stimulating factor (G-CSF) belongs 
to a family of cytokines that is primarily defined as a 
hematopoietic growth factor that induces proliferation, 
survival, and differentiation of neutrophil lineage cells (17). 
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There is growing a body of evidence that administration 
of G-CSF exerts neuroprotective abilities in stroke (10,12). 
Additionally, G-CSF itself possesses the protective effects 
through other mechanisms, including inhibition of apoptosis, 
and anti-inflammatory effects (10, 16).

Statins, 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) 
reductase inhibitors, have actions far beyond their cholesterol-
lowering effects. Previous reports have documented 
that simvastatin mediates many biological effects, such 
as increased nitric oxide bioavailability, improvement of 
endothelial function, and reduction of vascular inflammation 
and superoxide free radicals (7, 19). Recent studies suggest 
that simvastatin could have important protective potency in 
central nervous and vascular systems (8).

In virtue of the beneficial effects of both G-CSF and simvastatin 
on central nervous system, this study was designed to evaluate 
the hypothesis that G-CSF administration in combination 
with simvastatin may have synergistic beneficial effects on 
histological and neurological recovery in rats of ICH. 

MATERIAL and METHODS

All experimental procedures were performed in accordance 
with the National Institutes of Health Guide for the Care and 
Use of Laboratory animals (NIH Publication No. 8023, revised 
1978). Male Sprague Dawley rats (weight 200–220 g, 4 months 
old) were housed in a room at 23 ± 2 °C, 45% to 55% humidity 
with a fixed 12-h artificial light period and allowed to eat and 
drink ad libitum. All rats were injected i.p. with Brdu (50 mg/
kg, Sigma) daily for 10 consecutive days before the ICH. 

Stroke Model and Neurological Examination

All rats were anesthetized by chloral hydrate (35 mg/kg i.p.), 
and primary ICH was produced by the stereotaxic infusion of 
100 μL of fresh (nonheparinized) autologous whole blood into 
the right hemisphere striatum adjacent to the subventricular 
zone (SVZ), with a constant infusion rate of 10μL/min (15). 
At 24 hours post-ICH, the rats were randomly divided into 4 
groups (10 rats/group): Group 1 received recombinant human 
G-CSF (rhG-CSF, 50μg/kg, Amgen) by subcutaneous injection 
(14); Group 2 received simvastatin (8) (2 mg/kg, Sigma) by 
oral gavage; Group 3 received rhG-CSF (50μg/kg, Amgen, 
subcutaneous injection) plus simvastatin (2 mg/kg, Sigma, 
oral gavage); and group 4 (control group) received phosphate 
buffered saline (PBS). Each treatment was given starting 24 
hours after ICH and continued daily for the next 7 days. 

Neurological examination was performed using the modified 
neurological severity score (mNSS) (2, 20)and the cornering 
test (2, 20) which were performed before ICH and at 1, 7, 14, 
21 and 28 days after ICH by researchers who were blinded to 
the treatment group. 

Ultrastructural examination

For ultrastructural analysis, the animals were deeply 
anesthetized by an overdose of chloral hydrate, and sacrificed 
at 1 and 7 days after surgery (n=2 rats/group). Fresh brain 

tissue in the perihematomal zone was carefully removed 
and immediately fixed in 2.5% glutaraldehyde for 24 hours at 
4°C. Semithin sections were acquired as previously described 
(13), double stained with uranyl acetate and lead citrate and 
examined using a transmission electron microscope (TEM; 
JEM 1400 EX; Jeol, Tokyo, Japan). For each sample, 100 each of 
the synapse and mitochondria were counted, measured and 
analyzed by three-dimensional metrology.

Immunohistochemistry

At the 2-week post-ICH, the rats were perfused transcardially 
with 4% paraformaldehyde in PBS under anesthesia (n=6 rats/
group). The brains were removed from the skulls, post-fixed 
in 4% paraformaldehyde, sectioned into 2-mm-thick coronal 
through the entire region of ICH, and then embedded in 
paraffin. A series of 5-μm thick slices at various levels was cut 
from each block.

To identify the new cell formation in the neuronal and glial 
lineages postoperatively, double immunofluorescence 
labeling for 5-Bromo-2’-deoxyuridine ( Brdu, a marker for 
proliferation cells anti-Brdu-FITC (fluorescein isothiocyanate), 
1:400; Santa Cruz) with neuron-specific enolase (NSE, a marker 
of mature neurons, anti-NSE-Cy3, 1:400; DAKO), and Brdu with 
glial fibrillary acidic protein (GFAP, a marker of astrocytes, 
anti-GFAP-Cy3, 1:400; DAKO) were performed. The paraffined 
brain sections were infiltrated in xylene followed by alcohol 
hydration. After undergoing antigen retrieval, each coronal 
section was blocked in a Tris-buffered saline containing 1% 
bovine serum albumin (BSA). The slides were then incubated 
with primary anti- Brdu antibody. After brief washing in PBS 
buffer, the cerebral sections were incubated with anti-NSE or 
anti-GFAP. Double immunofluorescent images were acquired 
using fluorescent microscopy (Axiophot2, HB0100 W/2, Carl 
Zeiss Microlmaging Inc.) with a digital camera (C4742-95, 
Hamamatsu). The percentages of BrdU-NSE and BrdU-GFAP 
positive cells of each group were counted in 5 random 
microscopic fields (400×).

To test the microvessels around the injured region, antibody 
against Factor VIII (dilution, 1:300, lab vision, Fremont, CA) 
immunostaining was performed. In brief, the slides were 
treated with 3% hydrogen peroxide in methanol to block 
endogenous peroxidase activity. After PBS washing, sections 
were then incubated with antibodies against Factor VIII 
(dilution, 1:300, lab vision, Fremont, CA) at 4°C overnight. Then 
the sections were visualized by the avidin-biotin-peroxidase 
complex method and developed in diaminobenzidine (DAB). 
The numbers of factor VIII-positive blood vessels around the 
injured site were counted in three randomly chosen high 
power fields (×400; 1 mm2 fields). 

Apoptosis assay

Additional adjacent slices were used for terminal 
deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) 
assay. For each animal, apoptotic cells were analyzed by an 
in situ Cell Death Detection Kit, AP (Roche) following the 
procedure specified by the manufacturer. The percentage of 
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TUNEL-positive cells was counted under a light microscope 
(Axioskop; Zeiss, Oberkochen, Germany) at least three 
randomly chosen high-power fields (HPFs) (×400) within the 
region adjacent to the hemorrhagic core and averaged for 
each specimen. 

Statistical analysis

All measurements were performed by investigator blinded 
to the experimental procedure. Data are reported as means 
± standard errors. Inter-group differences were analyzed 
using one-way ANOVA. Statistical calculations were carried 
out using the SPSS software (version 13.0; SPSS Inc., Chicago, 
IL, USA). P values less than 0.05 were considered statistically 
significant. 

RESULTS

Neurological Examination

As evaluated by both mNSS and corner turn tests, there were 
no apparent differences among all four groups at 1 day after 
ICH (Figure 1A, B). The mNSS scores for G-CSF or Simvastatin 
monotherapy group improved at 1 week and significantly 
at 2, 3, and 4 weeks post-ICH compared to control group (all 
P<0.05), and further improved for combined therapy with 
G-CSF and Simvastatin (all P<0.05; Figure 1A). Cornering 
scores also showed that combination treatment significantly 
improved neurological function over control group from 1 
week to 4 weeks (all P<0.05; Figure 1B). It appears that co-

administration of G-CSF with simvastatin group exhibited 
obvious improvement than either monotherapy which 
expedited the recovery phase. 

Ultrastructural Findings

A series of ultrastructural damage of neurons were apparently 
observed in the area around the local hematoma, including 
formation of nucleolus condensed, moderate mitochondrial 
swelling, and destruction of synapse at day 1 post-ICH 
(Figure 2A). For the control group, extended ultrastructural 
damage was seen (Figure 2B). The pathologic change of 
cell ultrastructure in the experimental groups ameliorated 
obviously with the extending of time (Figure 2C,D,E). 

The result of the amount of synaptic vesicle Vv , mitochondria 
Vv, and mitochondria δm demonstrated that there was no 
significant difference between experimental groups and 
control group at 1 day post-ICH (P>0.05; Table I). On the 
7th day, it was found that these parameters referred above 
decreased in control group, but increased in G-CSF and 
Simvastatin treatment group, especially in combination 
group. A statistically significant difference was found between 
the combination group and control groups (P<0.05; Table II). 

Neurogenesis in the Hemorrhagic Brains 

Double immunofluorescence staining for BrdU and cell-
specific markers was also performed to detect any newly 
formed cells. Co-staining for BrdU-NSE and BrdU-GFAP 

Figure 1: The results of the cornering test (A) and mNSS (B) at baseline, days 1, 7, 14, 28 post-ICH. 

a B
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identified a subpopulation of cells that express neuronal 
markers while still dividing, suggesting that the cells positive 
for mature neuron and astrocyte markers in the vicinity of 
the hematoma are newly formed during the recovery stage 
(Figure 3). Consistent with the neurological function results, 
the combination group significantly increased the number 
of double-positive cells compared with G-CSF or Simvastatin 
monotherapy (P<0.05; Figure 3E, J).

Figure 2: Representative Transmission electron micrographs of sections in the ICH border zone. A) 1 day after ICH, nucleus of neuron 
was condensed with normal mitochondria, mildly swollen mitochondria and myelin separation. Bar =2 um, ×8000. m = mitochondrion; 
v = vacuole. B-E) 7 days after ICH: (B) control group, part of synaptic junctions were disrupted with mitochondrial swelling, the 
structure of vacuoles was disrupted; (C) G-CSF, the damage was attenuated with higher synaptic vesicles; (D) Simvastatin, the damage 
was attenuated with higher synaptic vesicles; (E) combination treatment, the damage was notably attenuated with abundant synaptic 
vesicles). Bar = 1 um, ×30 k.

Table I: Mean Amount for Each Ultrastructural Feature

Table II: Mean Amount for Each Ultrastructural Feature

Feature Control Simvastatin G-CSF Simvastatin+G-CSF
synaptic vesicle Vv† 14.84±2.93 14.24±2.29 14.78±1.92 14.75±1.58
mitochondria Vv† 11.92±5.01 11.85±5.01 11.79±5.01 11.90±5.01
mitochondria δm† 45.62±3.66 44.86±5.02 46.72±3.12 45.24±4.04

Values are means ± standard deviation.
G-CSF = granulocyte-colony stimulating factor.
†No significant difference between any group (all P >0.05).

Feature Control Simvastatin G-CSF Simvastatin+G-CSF
synaptic vesicle Vv† 7.80±1.00 32.24±2.90 34.28±2.35 39.28±3.32
mitochondria  Vv†  4.96±1.60 30.79±3.01 36.48±2.98 39.26±3.58
mitochondria δm† 20.47±2.37 75.80±5.82 90.69±9.09 128.24±9.86

Values are means ± standard deviation.
G-CSF = granulocyte-colony stimulating factor. 
†Significant difference between experimental groups and control group (all P <0.05).

a B C

D E

Factor VIII expression in the Hemorrhagic Brains

As shown in Figure 4A-E, the microvasculature densities (MVD) 
in the combination treatment were increased significantly 
compared to PBS-treated group at 2 weeks after ICH. 
Moreover, G-CSF or Simvastatin-treated group significantly 
enhanced the density of factor VIII –positive microvessels 
in set areas than that of the PBS-treated group. The results 
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indicated that combined therapy G-CSF with Simvastatin 
promoted significantly the proliferation of microvessels 
around the injured region.

Cell apoptosis in the Hemorrhagic Brains

Apoptotic cell death is another indicator of hemorrhagic 
damage, which was initiated shortly after ICH (data not 
shown). TUNEL assay (Figure 5A-E) showed that the number 
of TUNEL positive nuclei around the injured site substantially 
reduced in combination treatment than that in treated 
groups, remarkably decreased in the G-CSF and Simvastatin 
group than the control group. Overall, these data indicated 
that there was less apoptosis in rats post-ICH treated with 
G-CSF plus Simvastatin at 2 weeks.

Figure 3: Representative immunostaining and quantitative immunoreactivities of Brdu- NSE‚ Brdu- GFAP near injured area. A–D) 
Colocalization of BrdU and NSE (A) control group; (B) G-CSF; (C) Simvastatin; (D) combination treatment).  F–I) Colocalization of BrdU 
and GFAP (F) control group; (G) G-CSF; (H)Simvastatin; (I) combination treatment). Quantitative immunoreactivities for all four groups 
are presented as bar graphs (E, J).
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DISCUSSION

During intracerebral hemorrhage (ICH), the primary damage 
attributed to rapid accumulation of blood within brain 
parenchyma is the result of mechanical damage associated 
with the mass effect. Then the resulting local blood clot 
triggers a series of adverse events that cause secondary 
insults, which lead to normal ultrastructural neuro-disruption, 
midline shift, deadly edema formation, oxidative stress and 
inflammation. Ultimately, these elicit severe neurological 
deficits. The pathophysiological features occurring after 
spontaneous ICH could be well understood depending on 
experimental ICH animal model induced by direct injection 
of autologous blood into the striatum of the rat that has been 
proven to be reliable for replicating the human condition.
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cell death in ICH animals. Motor and sensory score also 
improved more and faster for the combination therapy of 
G-CSF and simvastatin than either therapy alone. These 
findings suggest that simvastatin administration facilitates 
the efficacy of G-CSF by attenuating neurological deficits and 
improving motor and sensory function which in parallel with 
the improved histological outcome in this ICH model.

Similar results were observed when both G-CSF and 
simvastatin exhibited a beneficial modulatory effect on 
morphological recovery. According to our assessment on 

In our present study of the autologous blood induced ICH rat 
model, the data showed the potential therapeutic efficacy 
of G-CSF and simvastatin administration for neurological 
function recovery and regeneration. Furthermore, the most 
important finding in our current investigation was that 
the combined therapy of G-CSF and simvastatin exerted 
noticeably synergistic effects on histological and neurological 
outcomes, which significantly correlated with protecting 
ultrastructural damage, the new cell formation of neural cell 
and vascular endothelial cell, and reducing perihematomal 

Figure 4: Representative immunostaining and quantitative immunoreactivities of microvessels with the factor VIII in the ICH border 
zone. A) control group; B)  G-CSF; C) Simvastatin; D) combination treatment. E) Bar graphs present vascular density of the four groups 
in the ICH border zone.

Figure 5: Representative photomicrographs and quantitative immunoreactivities of TUNEL-positive cells in the boundary zone around 
the hematoma. A) control group; B) G-CSF; C) Simvastatin; D) combination treatment. E) Bar graphs present numbers of TUNEL positive 
cells of the four groups.
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simvastatin may relate to the fact that endothelial NO synthase 
(eNOS)/vascular endothelial growth factor (VEGF) mediated 
signal transduction play important role in improvement of 
the endothelial function from previous reports (18).

Furthermore, like the anti-apoptotic effect of G-CSF, simvastatin 
has been known to have the equal biological features, which 
have been consisted with our observation in the TUNEL assay. 
G-CSF was found to exert a direct effect on attenuating cells 
death through the G-CSF receptors expressed on neurons 
and glial cells by triggering downstream signaling pathway. 
It is suggested that G-CSF and granulocyte-macrophage 
colony-stimulating factor (GM-CSF) induced activation of the 
activator of transcription (STAT) signaling pathways and the 
apoptosis regulation factors (3, 16). Likewise, simvastatin-
mediated anti-apoptotic effect could via upregulation of 
the anti-apoptotic molecule B-cell lymphoma 2 (Bcl-2) (9). 
Accordingly, the apoptosis cells in the boundary zone around 
the hematoma were significantly reduced after combined 
treatment of G-CSF and simvastatin than either therapy alone 
as evidenced by our present study.

CONCLUSIONS

Our data show that the administration of G-CSF together with 
simvastatin is superior to either therapy alone in enhancing 
histological and neurological outcomes in experimental ICH. 
It appears that the mechanism underlying the therapeutic 
efficacy of the combination therapy may be linked to the 
amelioration of ultrastructural structure, promotion of 
neurogenesis and neovascularization, and reduction of the 
number of apoptosis.
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