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ABSTRACT 

AIm: Epileptic seizures lead to neuronal loss in the hippocampus. Experimental epilepsy can be induced by direct application of various 
chemicals to cerebral cortex. Nifedipine is an L-type voltage-dependent calcium channel blocker. In spite of several studies that show the 
seizure-suppressing effects of nifedipine, it has been shown that nifedipine does not suppress but conversely increases epileptic seizures. 
Similarly, contradictory effects of nifedipine have been reported, such as neuroprotection, failed neuroprotection and neurotoxicity. We 
therefore aimed to investigate the effect of nifedipine on hippocampal neuronal loss in penicillin induced epileptic rats in this study.  

MaterIal and Methods: The effect of nifedipine on total hippocampal neuron number was estimated by using the optical fractionator 
method (an unbiased stereological method) in penicillin-G induced epileptic rats.    

Results: The total number of hippocampal neurons in the control group was 183687 ± 3184. In the penicillin-induced group, the total neuron 
number significantly decreased to 146318 ± 3042 compared to the control group. In the nifedipine group, the neuron number significantly 
decreased to 128873 ± 1157 compared to both control and penicillin-induced groups.  

ConclusIon: Nifedipine increased neuronal loss and did not suppress epileptic seizures in penicillin-induced epileptic rats. Nifedipine could 
not protect against hippocampal neuronal loss in penicillin-induced epileptic rats.      
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ÖZ 

AMAÇ: Epileptik nöbetler hipokampusta nöron kaybına yol açmaktadır. Çeşitli kimyasalların beyin korteksine direkt olarak uygulanmasıyla 
deneysel epilepsi oluşturulabilir. Nifedipin, L-tipi voltaj bağımlı kalsiyum kanal blokörüdür. Nifedipinin nöbet baskılayıcı etkilerini gösteren 
çeşitli çalışmalar bulunduğu gibi, epileptik nöbetleri baskılamadığı tam tersine arttırdığı da gösterilmiştir. Benzer şekilde, nifedipinin çelişkili 
etkileri bildirilmiştir; olumlu - olumsuz nöroprotektif (nöron koruyucu) ve nörotoksisite gibi. Bu nedenle, bu çalışmada, penisilin ile deneysel 
epilepsi oluşturulan sıçanlarda nifedipinin hipokampal nöron kaybı üzerine etkisini araştırmayı amaçladık. 

YÖNTEM ve GEREÇLER: Nifedipinin penisilin G ile deneysel epilepsi oluşturulan sıçanlarda toplam hipokampal nöron sayısına etkisi tarafsız 
(objektif ) bir stereolojik metot olan optik parçalama yöntemi ile değerlendirildi.      

BULGULAR: Kontrol grubunun toplam hipokampal nöron sayısı 183687 ± 3184 idi. Penisilin grubunun toplam nöron sayısı kontrol grubuna 
göre anlamlı olarak düşüktü (146318 ± 3042). Penisilin+nifedipin grubunun toplam nöron sayısı (128873 ± 1157) hem kontrol hem de penisilin 
grubuna göre istatistiksel olarak anlamlı olarak azalmış bulundu.   

SONUÇ: Nifedipinin epileptik sıçanlarda nöron kaybını arttırdığı ve epileptik nöbetleri baskılamadığı ortaya kondu. Nifedipin, penisilin ile 
deneysel epilepsi oluşturulan sıçanlarda ortaya çıkan nöron kaybına karşı koruyucu bir etki göstermedi.      
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Effect of Nifedipine on Hippocampal Neuron 
Number in Penicillin-Induced Epileptic Rats 
Nifedipinin Penisilin ile Deneysel Epilepsi Oluşturulan Sıçanlarda 
Hipokampal Nöron Kaybına Etkisi

Introduction

Previous clinical and experimental epilepsy studies have 
shown that the epileptic seizures activated by the hyperexcit-
ability of the hippocampus may cause irreversible pathologi-
cal alterations in this area. These alterations include neuronal 
loss, neuronal degeneration and volume decrease in the hip-
pocampus (14,51).

Chemical convulsants are widely used as a simple and rapid 
seizure-inducing technique and penicillin is a common agent. 
The penicillin-epilepsy (PE) model has been commonly used in 
experimental animal studies to investigate the neuronal basis 
of epilepsy. In the PE model, the seizures are characterized 
by the reduced inhibitory effect of GABA in the cortex (18). 
However, increased glutamate secretion has been shown in 



Turkish Neurosurgery 2014, Vol: 24, No: 2, 234-240 235

Yilmaz I. et al: Nifedipine and Hippocampal Neuron Number

the frontoparietal cortex (6), hippocampal neuron culture 
(10) and motor cortex (17). Our previous studies have shown 
that the PE model decreases neuron number in the pyramidal 
cell layers of the CA1, CA2 and CA3 fields of the hippocampus 
(2,3,53).

Calcium is a major signaling molecule and has been 
implicated to play an important role in epileptogenesis and 
neuronal death in various acute neurological diseases. During 
seizure, inreased intracellular concentrations and decreased 
extracellular concentrations of calcium have been shown 
(15). Ca+2 is described as the primary mediator of “excitotoxic” 
neuronal damage. Ca+2 entry starts a cascade of biochemical 
reactions within the neuron that leads to its death. Depending 
on the availability of energy, necrosis and apoptosis or both 
can occur. Both necrotic and apoptotic cell death is associated 
with Ca+2 entry into the cells during status epilepticus (23).

Calcium channel blockers may have a potential role since 
the influx of calcium ions into neurons is thought to be an 
important feature of epileptogenesis. Animal studies and 
limited clinical trials have also suggested that calcium 
channel blockers may be potentially useful in epilepsy. More 
importantly, elevated levels of intracellular Ca+2 are thought 
to activate numerous Ca+2-dependent processes that lead to 
cell death. Blockage of Ca+2 channels may play a key role in 
preventing these events (23,48). 

Nifedipine is a dihydropyridine type voltage-dependent 
calcium channel blocker. It has been shown that this drug 
displays antiepileptic activity in pentylenetetrazol (PTZ)-
induced epilepsy (25,36), maximal electroshock (MES)-evoked 
seizures in a dose dependent manner (19), hippocampal-
kindled seizures (46) and picrotoxin-induced seizures (44). 
Contrary to expectations, nifedipine did not influence 
aminophylline-induced seizures (12), seizures elicited by 
MES (36) and the protective action of diazepam against 
PTZ-induced seizures (13). Further, nifedipine decreased 
topiramate activity in WAG/Rij rats but paradoxically enhanced 
it in lh/lh mice (41) and increased epileptiform activity in 
spontaneous seizures in the isolated mouse hippocampus 
(16). In addition to these, clinical studies have also been 
performed in epileptic patients to investigate the effects of 
nifedipine. They have failed to confirm its efficacy in epilepsy, 
but EEGs suggested a small improvement with higher dose 
nifedipine (26,27).

Nifedipine also has effects on neuronal death. It has been 
shown to protect in Alzheimer’s disease in cell cultures (38), 
brevetoxin-induced excitotoxicity (7), 4-hydroxynonenal 
(4HN)-induced neurotoxicity in hippocampal neurons (1), 
AMPA and kainate-induced neurotoxicity (47). On the contrary, 
nifedipine failed to protect against kainate (30), glutamate 
(34) and 4HN-induced neurotoxicity in cerebellar granule 
neurons (CGNs) (4). It also potentiates kainate neurotoxicity 
in CGNs (28,29).

Nifedipine has clearly been shown to have variable and even 
contradictory (beneficial or detrimental) effects in different 

studies and its neuroprotective or neurotoxic mechanisms 
remain to be clarified in other, still not investigated models, 
such as PE. Accordingly, we aimed to investigate the effect of 
nifedipine on hippocampal neuronal loss in the PE model in 
the present study.

Material and Methods

Animals

Male Sprague–Dawley rats weighing 250-300 g (Pamukkale 
University Experimental Animal Laboratory, Denizli, TURKEY) 
were used for this study. The rats were housed in cages (4–5 
rats per cage). All cages were kept in an animal room with 
a controlled temperature (23±2°C) and relative humidity 
(60±5%) with lights on from 7:00 to 19:00. All procedures in 
the present study were conducted according to a protocol 
approved by the ethical committee. All efforts were made 
to minimize animal suffering and to reduce the number of 
animals used (53).

Experimental Procedure

A total of 15 rats were randomly divided into three groups; 
control group (8 μl saline injected intracortically, n=5), 
penicillin group (500 IU Penicillin-G in a volume of 8 μl 
injected intracortically, n=5), penicillin+nifedipine group (500 
IU Penicillin-G in a volume of 8 μl injected intracortically and 
10 mg/kg nifedipine injected i.p. at the same time as penicillin, 
n=5). For intracortical injections, rats were anaesthetized 
with Xylazine (10 mg/kg, i.p.) and Ketamine (90 mg/kg, i.p.). 
Saline or penicillin was injected to the right cerebral cortex 
intracortically by using a stereotaxic device (Stoelting, Wood 
Dale, IL, USA). The coordinates (mm) applied were relative to 
the skull surface, with the upper incisor bar 3.4 mm below the 
level of the interaural line, according to the rat brain atlas (37): 
posterior to the bregma AP=−2; right to the midsagittal line, 
L=2 mm, and dorsoventral, DV=2.

Neuronal Counts and the Optical Fractionator

A week later, all animals were decapitated; their brains 
were removed by craniotomy. The brains were immediately 
frozen in a cryostat (Leica CM3050, Bensheim, Germany) at 
−50 0C. Frozen brains were cut in the horizontal plane with 
a thickness of 150 mm at −15 0C in cryostat. Sections stained 
with haematoxylin and eosin.

The total neuron number was estimated by the optical 
fractionator method in the pyramidal cell layer of the CA1, 
CA2 and CA3 fields of the hippocampus (49). In order to avoid 
the effect of local intracortical injection, estimation of the 
number of neurons in each group was performed in the left 
hippocampus (Figure 1 A-C).

Sections

The systematic random sampling scheme was used to 
choose sections. Accordingly, one of the first two sections 
in the series was chosen randomly as the first section. This 
section and every second following sections were stained 
with hematoxylin-eosin to use for counting neurons. Thus the 
section sampling fraction (ssf ) was 1 / 2.
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Sectional area

In each of the chosen sections, neurons were counted with 
optical dissectors at the predetermined x, y axis in the CA1-
CA3 fields of the hippocampus. The predetermined “x” 
and “y” steps were 300 mm. Microscopic images obtained 
from pyramidal cell layers in the CA1, CA2 and CA3 fields of 
the hippocampus using an X100 oil objective (N.A.=1.25) 
were transferred to a monitor. An unbiased counting frame 
(Gundersen’s unbiased counting frame) (49) was then 
superimposed on the monitor image of the section. The area 
of the counting frame of the dissector, a (frame), was known 
(20 mm x 20 mm = 400 mm2) relative to the area associated 
with each x, y movement, a (x, y step). Thus, the area sampling 
fraction (asf ) = a (frame) / a (x,y step).

Section thickness

At each step in the CA1-CA3 fields of hippocampus to be 
sampled, the neuronal nuclei were first observed under the 
frame. Afterwards, the plane of focus was moved 5 mm into 
the section. The counting frame was then focused through 
the thickness of 30 mm into the section and the number 
of neuronal nuclei was counted according to the rules of 
unbiased counting (Q-). Thus, the height (h) of the dissector 
was 30 mm (h = 30 mm).

At each step in the CA1-CA3 fields of hippocampus to be 
sampled, the distance between the positions of the stage 
where the neuronal nuclei of first layer came into focus 
from above and below the section (i.e., the top and bottom 
surfaces) was determined. The distance in between the top 
and the bottom surfaces was measured. The mean thickness 
(t) of the section was calculated for each of the section used 
in the analysis. Thus, the thickness sampling fraction (tsf ) = 
h (the height of the dissectors) / t (the mean of the section 
thickness). 

Neurons were counted in a known sampled fraction of the 
hippocampus. The total number of neurons in the CA1-CA3 
fields of the hippocampus (N) was estimated as;

N = S Q- x (1 / ssf ) x (1 / asf ) x (1 / tsf ) (42,49)

S Q- : The total number of neurons counted in the height of 
the dissectors on the sampled sections.

Statistical Analysis

Statistical analyses for neuron counts were performed 
using the Kruskal–Wallis variance analysis. Subgroups were 
compared with each other using the non-parametric Mann–
Whitney U test. A p-value < 0.05 was taken as statistically 
significant. Since the random sampling method was used 
during neuron count, results were expressed as mean ± 
standard error of the mean (S.E.M.).

Results

In the penicillin group, the seizures were characterized by 
focal commencement (tremor and convulsion in fore limbs) 
and then generalized to the hind limbs and the whole body. 

Figure 1: Comparative microphotograph of the hippocampal 
sections. The sections belong to the left hippocampus of the 
studied groups and were taken from similar levels. Arrows 
indicate the borders of the pyramidal cell layer studied. A) 
Control group, B) Penicillin group, C) Penicillin+nifedipine group 
(Scale bar = 50 μm for all panels) (Stained with hematoxylin-eosin 
and 40x magnification).

A

b

c
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perioral movements, gnawing, ataxia, tail erection, circling, 
revolving and sudden jumps symptoms were observed. In 
the present study, even though no statistical results were 
presented, epileptic seizures were also observed in all rats 
of penicillin+nifedipine group. These observations are in 
agreement with Derchansky et al. In their study, it was 
demonstrated that the epileptiform activity became enhanced 
and more frequent following nifedipine administration (16). 
Also, Otoom and Hasan reported that nifedipine did not 
significantly alter the latency of onset of clonic seizure in 
doses of 5 mg/kg, but increased the latency of onset in doses 
of 20 mg/kg in picrotoxin-induced seizure. Additionally, in the 
abovementioned study, nifedipine (in doses of 10 mg/kg) did 
not reduce the incidence of clonic seizures, but inhibited tonic 
seizures and the progression of clonic seizures into maximal 
tonic seizures in four of eight animals (35). On the other hand, 
there are some studies that report opposing findings in the 
literature (16,19,22,25,26,36,44,46). 

The unpredictable effects of nifedipine on hippocampal 
neuronal loss indicates that there may be a drug interaction 
between penicillin and nifedipine. Although the literature 
has not provided any information on pharmacodynamic 
interactions between penicillin and nifedipine, several 
studies have indicated that these drugs may interact 
pharmacokinetically (24,50). However, these studies do not 
explain the interference with the central nervous system and 
particularly with the neuronal loss.

The pyramidal neurons in the hippocampus are highly 
sensitive to anoxia and ischemia, including those induced 
by epileptic seizure (9). This property can be attributed to 
the histological characteristics of the hippocampus, which is 
composed of three layers, compared to the six-layer structure 
of the cerebral cortex (8). The pathological changes in the 
hippocampus and other limbic structures are the hallmark of 
epilepsy both in human epilepsy and in experimental animal 
epilepsy models. Hippocampal sclerosis and pyramidal 
neuronal loss are the most frequent pathological changes 
observed in post-extended seizure activities (39). 

In recent years, estimating the total neuron number in the 
pyramidal layer of the hippocampus by using the stereological 
methods is believed to be more reliable, unbiased and 
effective compared to nonstereological methods used in the 
analysis of three-dimensional biological structures (42,49). 
In the present study, the stereological method was used to 
estimate the total neuron number in the CA1, CA2 and CA3 
fields of the hippocampus. The subiculum, presubiculum, 
CA2 field and dentate gyrus are relatively more resistant to 
epileptic seizures, whereas prominent changes could be 
observed in the CA1, CA3 and CA4 fields. The CA4 corresponds 
to the hilus of the dentate gyrus, and has different anatomical 
and histological characteristics (39,49). Accordingly, the CA4 
had been either excluded from neuronal counting studies 
(2,53) or considered separately from the CA1 and CA3 fields 
(49). Neuronal counting was therefore carried out in the CA1 
and CA3, and the in-between CA2 fields, whereas the CA4 

Hyperactivity (80%), ataxia (60%), jumping (60%), rotating 
(40%), tail erection (40%), rolling (40%), shaking (40%) and 
perioral movements (60%) were observed in the penicillin 
group after the clonic and myoclonic seizures. In the 
penicillin+nifedipine group, rats also showed hyperactivity 
(80%), ataxia (60%), jumping (80%), rotating (40%), tail erection 
(60%), rolling (40%), shaking (40%) and perioral movements 
(60%) after the development of clonic and myoclonic seizures. 
Although no statistical results are presented, it was clearly 
observed that nifedipine did not suppress epileptic seizures 
in the PE model. No behavioral change was observed in the 
control group.

Pyramidal neurons were counted by using the optical 
fractionator method, a stereological method, which is 
believed to be a more unbiased, reliable, and effective method 
compared to nonstereological methods (42,49). In addition, 
a coefficient (CE) value lower than 10% is in the acceptable 
range (20). In our study, calculated CE values were below 10 
% for all animals. In the control group, the total hippocampal 
pyramidal neuron number was (mean ± S.E.M) 183687 ± 
3184. In the penicillin group, the neuron number significantly 
decreased to 146318 ± 3042 compared with the control group 
(p=0.008, Mann-Whitney U). In the penicillin+nifedipine 
group, the neuron number significantly decreased to 128873 
± 1157 compared with both the penicillin and control groups 
(p=0.008 for both, Mann-Whitney U) (Figure 1 A-C, Figure 2).

Discussion 

In this study, the seizures started after 2–4 min, a result 
consonant with those reporting seizures after 2–5 min 
(3,53). In line with that reported in our previous study 
(53), generalization of the seizures after 30-40 min and 

Figure 2: Means of total hippocampal pyramidal neuron 
numbers in groups. *; Neuron number significantly decreased 
in penicillin group compared with control group (p<0.05; Mann 
Whitney U). #, †; The neuron number significantly decreased in 
the penicillin+nifedipine group compared with the control and 
penicillin groups, respectively (p<0.05 for both; Mann Whitney 
U).
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not prevent glutamate-induced cell death (34). Glutamate 
becomes neurotoxic to CGNs via the NMDA receptor when 
intracellular energy levels are reduced (32). In our present 
study, these above-mentioned mechanisms may have played 
role in the increased neuron loss of the penicillin+nifedipine 
group. 

In conclusion, we have shown that nifedipine leads to 
increased hippocampal neuronal loss in the PE model in our 
present study. In the future, planning novel studies especially 
for understanding the molecular basis of neuron loss will 
provide considerable advantages. However, investigators 
should consider the lack of experimental models that fully 
evaluate a complex disorder such as epilepsy and perform 
their studies using different animal models of epilepsy and 
also with different doses of nifedipine. 
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