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Protective Effects of Intralipid and Caffeic Acid Phenyl Esther 
(CAPE) on Neurotoxicity Induced by Ethanol in Rats

ABSTRACT

oxygen species (ROS) and free radicals are generated during 
ethanol metabolism, causing oxidative stress and lipid peroxi-
dation in the liver, brain, heart and skeletal muscles (1,6,18,21). 

Mitochondria are major targets for ethanol toxicity in the liver, 
brain, heart, skeletal muscles, and exocrine pancreas (4). 
Ramachandran et al (23) showed in their study that utilized 
cultured fetal rat cortical neurons that ethanol elicits a rapid 
onset of oxidative stress, which culminates in mitochondrial 
mediated apoptotic cell death. Animal studies have found that 
long-term ethanol intoxication is not necessary to cause brain 

█    INTRODUCTION

Ethanol, is a colorless liquid with the structural formula 
CH3CH2OH, often abbreviated as C2H5OH or C2H6O. It 
is also used as a psychoactive drug and is one of the 

oldest recreational drugs still used by humans. Ethanol can 
cause alcohol intoxication when consumed.

Alcoholic patients can develop not only liver lesions but also 
pancreatitis, brain damage, peripheral neuropathy, cardio-
myopathy, and skeletal muscle myopathy (18,23). Reactive 

AIm: Ethanol causes oxidative degradation of the mitochondrial genome in the brain. This effect could contribute to the development 
of brain injury in some alcoholic patients. We investigated the protective effect of caffeic acid phenyl esther (CAPE) and intralipid (IL) 
on oxidative stress and neurotoxicity induced by ethanol intake.
MaterIal and Methods: The forty-eight rats were randomly divided into seven groups. Ethanol was administered for acute 
toxicity. IL and CAPE were administered immediately after ethanol intake. Total oxidant status (TOS), total antioxidant status (TAS), 
and oxidative status index (OSi) were evaluated and histologic examination of cerebellum and brain tissue with Hematoxylin-Eosin 
and immuno-histochemical dyes was performed.      
Results: In the ethanol group, TAS levels were significantly lower than the other groups and this finding indicates that the toxic 
effect of ethanol reduces antioxidant levels. In the ethanol group, TOS levels were significantly higher than the other groups. These 
results showed that ethanol induced oxidative stress. IL treatment increased TAS levels, and CAPE decreased TOS levels against 
ethanol toxicity. There was correlation between TAS and TOS levels. Also, histopathologic results confirmed these biochemical 
results.   
ConclusIon: CAPE and IL treatment could be effective course of therapy to enhance therapeutic efficacy and may provide a 
promising approach for the treatment of neurotoxicity and oxidative stress induced by ethanol in clinic.        
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damage. Studies have shown that as little as a few days of 
intoxication can lead to neuronal loss in several brain areas of 
adult rats (8).

Metabolic and physiological processes produce reactive 
oxygen species and either enzymatic or nonenzymatic 
antioxidative mechanisms may cause harmful oxidative 
reactions in organisms. Shift of oxidative/antioxidative balance 
towards the oxidative status is due to the increase in oxidants 
and decrease in antioxidants (10).

Antioxidant molecules can prevent and/or inhibit these harmful 
reactions (11). Oxidative stress index (OSi) is accepted as the 
indicator of the degree of oxidative stress and was calculated 
as the ratio between TOS and TAS (TOS/TAS).

In recent years, several reports have suggested that caffeic 
acid phenyl esther (CAPE), active substance of propolis, 
is a natural composite with anti-inflammatory, antioxidant, 
immuno-modulatory, antimycosis and anticarcinogenic 
effects (2). The antioxidant activity of propolis extract is 
mainly attributed to its flavonoid content, which is capable 
of scavenging free radicals and thereby protection against 
lipid peroxidation. Propolis also induces the activation of 
antioxidant enzymes such as superoxide dismutase and 
catalase against free radicals (3).

Intralipid (IL) contains mainly triglycerides with saturated and 
unsaturated fatty acids. The unsaturated lipids could act as 
ROS scavengers. IL could also act directly on cell membranes, 
and induce structure alterations leading to a decrease of the 
ROS release in the extracellular medium (16). 

In this study, we investigated the protective effect of CAPE 
and IL on oxidative stress and neurotoxicity induced by 
ethanol intake.

█    MATERIAL and METHODS
Animals, Care and Nutrition

A total of forty-eight female Wistar Albino rats weighing 200-
250 g were kept under laboratory conditions with a 12-hour 
light/dark cycle and a room temperature of 21±3ºC. Standard 
pellet food was used for feeding and all animals had free 
access to water. The study was approved by the Necmettin 
Erbakan University Experimental Medical Research Center’s 
Experimental Animals Ethics Committee.

Animals and Treatment

The forty-eight rats were randomly divided into seven groups 
(n=6) as control (C), Ethanol (E), IL, CAPE, IL plus ethanol 
(IL+E), CAPE plus ethanol (CAPE+E) and IL plus CAPE plus 
ethanol (IL+CAPE+E) groups. The rats were administered 
ethanol (3 mg/kg oral), IL (18.6 mL/kg oral) and with CAPE 
(10 µmol/kg intraperitoneal). IL and CAPE were administered 
immediately after E administration. Rats were sacrificed under 
ketamine/xylazine (60/5 mg/kg) anesthesia. Brain tissue of the 
rats was removed and divided longitudinally into two sections. 
One section was stored under -70 °C for biochemical analysis 
and the other part was kept in formaldehyde solution for 
histologic examination. 

Biochemical Analysis

The total antioxidant status (TAS)

TAS of supernatant fractions was measured by automated 
and colorimetric method developed by Erel O. (10,11). This 
method allows producing the most potent biological radicals 
such as hydroxyl radicals. In the experiment, the ferrous ion 
solution was mixed with hydrogen peroxide and potent radicals 
such as dianisidinyl radical cations produced by the hydroxyl 
radicals were developed. By this way, the antioxidative effect 
of the material was measured against the potent-free radical 
reactions started by the produced hydroxyl radicals. The 
experiment has excellent sensitivity values lower than 3%. 
The total antioxidant response results were mentioned as 
nmol Trolox equivalent/mg protein.

The total oxidant status (TOS)

The TOS of supernatant fractions was measured by automated 
and colorimetric method developed by Erel O. (10,11). Ferrous 
ion-o-dianisidine complex is oxidized to ferric ion by the 
oxidants present in the sample. Glycerol molecules, which 
were profusely present in the reaction medium, increase the 
oxidation reaction. In the acidic medium, ferric ion produces a 
colored complex with xylenol orange and spectrophotometric 
methods can measure the color intensity that is related to the 
total amount of oxidant molecules present in the sample. The 
measurement was calibrated with hydrogen peroxide and the 
results were presented as nmol H2O2 equivalent/ng protein.

Histopathologic Analysis

Immunohistochemical procedures

Immunohistochemical examination was performed on a Leica 
Bond-Max automated IHC/ISH platform (Leica Microsystems 
Inc, Buffalo Grove, Illinois). Four-micrometer paraffin sections 
were dewaxed in a Bond Dewax solution, rehydrated in 
alcohol and Bond Wash solution (Leica Microsystems). 
Antigen retrieval was performed using a high-pH (ER2) 
retrieval solution for 15 minutes followed by endogenous 
peroxidase blocking for 5 minutes on the machine. Anti-
mouse monoclonal antibody Bcl-2 (C-2: sc-7382, Santa Cruz 
Biotechnology, Inc. in dilution 1:200), anti-mouse monoclonal 
antibody Bax (B-9: sc-7480, Santa Cruz Biotechnology, Inc. in 
dilution 1:100) and anti-mouse caspase-3 (CPP32) monoclonal 
antibody (clone JHM62, Leica Biosystems Ltd, Newcastle) at 
1:50 dilution were applied for 60 minutes at room temperature. 
Detection was performed using the Bond Polymer Refine Red 
Detection system (Leica Microsystems) with a 15-minute 
postprimary step followed by 25 minutes of incubation with 
alkaline phosphatase-linked polymers. Sections were then 
counterstained with hematoxylin on the machine, dehydrated 
in alcohols, and mounted with mounting medium (Sakura 
Finetek USA Inc, Torrance, California). 

Histopathologists who were unaware of the experimental 
study groups evaluated the specimens. Apoptotic cells were 
counted in a blind fashion microscope fields under 400X 
magnification. The average number of stained neurons for 
each set of ten fields were calculated and mentioned as the 
number of the positive cells/high-power field.
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Histological examination 

The brain and cerebellum specimens were dehydrated in 
alcohol and embedded in paraffin after immersed individually 
in 10% neutral buffered formaldehyde. 4 μm sections were 
deparaffinized and stained with hematoxylin and eosin. The 
specimens were examined in random order under blindfold 
conditions with light microscopy. Inflammation, oedema, 
congestion, degeneration, necrosis and necrobiosis were 
evaluated. After the results were graded, all of the groups 
were compared with each other.

Statistical Analysis

The data for the biochemical parameters were analyzed by 
ANOVA, followed by the post hoc Tukey test and Dunnet T3. 
All data was presented using SPSS Windows 20.0 (IBM SPSS 
Statistics Data editor). A value of p <0.05 was considered 
statistically significant.

█    RESULTS
Biochemical Results

TAS levels: In ethanol group, TAS levels were lower than other 
groups and this finding indicates that toxic effect of ethanol 
reduces antioxidant level. Comparing the E+CAPE, E+IL 
and E+CAPE+IL groups with the E group revealed that TAS 
levels were lower in the E and E+CAPE groups than the other 
groups. This finding showed that IL treatment is effective on 
the oxidative stress due to ethanol toxicity (Figure 1). 

TOS levels: In the E and E+I groups, TOS levels were 
significantly higher than other groups. The most significant 
result was the decrease of TOS level in the CAPE group. 
This result showed that CAPE decreases the oxidative stress 
level (Figure 2). The oxidative stress index (OSi) revealed that 
ethanol causes significant oxidative stress (Figure 3). 

The comparison of the post-medication TAS, TOS, and OSi 
levels in brain tissues is summarized in Table I. 

Histological Findings

Hematoxylin and eosin (H&E): 

The brain and cerebellum specimens were examined under the 
light microscope (X200 and X400) for inflammation, oedema, 
congestion, degeneration, necrosis and necrobiosis findings.

Scoring:

Semi-quantative grading was performed as:

Figure 1: Evaluating the TAS levels showed that there is significant 
difference between ethanol group with control, CAPE, IL, E+CAPE, 
E+IL and E+CAPE+IL groups.

Figure 2: Evaluating the TOS levels showed that there is 
significant difference between ethanol group with control, CAPE, 
IL, E+CAPE, E+IL and E+CAPE+IL groups.

Figure 3: Oxidative stress index (OSi) revealed that ethanol causes 
significant oxidative stress.
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Immunohistochemical findings:

Seven rats were evaluated in each group. Caspase-3, bcl-2 
and bax antibodies were used for apoptotic cell counting. Ten 
randomized microscope fields (X200) were counted (Figure 
7A). There was a significant increase of apoptotic cells in 
ethanol group (Figure 7B). Examination of E+IL, E+CAPE 
and E+IL+CAPE groups showed a significant decrease in 
apoptotic cells (Figure 7C,D) when comparing with the ethanol 
alone group (p<0.05).

█    DISCUSSION
There are several mechanisms that have been proposed 
to explain E-related brain damage. It is well known that 
ethanol, when administered acutely in a pharmacologically 
relevant dose, selectively and potently inhibits the function 
of N-methyl-D-aspartate (NMDA) receptors. Increased 
calcium influx through NMDA receptors is tightly coupled 
to uptake into mitochondria and causes the production of 
reactive oxygen species that interfere with the function of 
mitochondria and plasma membranes (9,20). It is well known 
that ethanol metabolism causes oxidative stress. Mansouri et 
al. (19) showed that acute ethanol intake oxidatively damages 
and reduces mitochondrial DNA in mouse liver, brain, heart 
and skeletal muscles. So, it is clear that ethanol intake causes 
oxidative stress in the liver and extra-hepatic tissues.

The present study showed TAS levels were significantly lower 
than other groups and this finding indicates that toxic effect of 
E reduces antioxidant levels in E group. Also, in the E group, 
TOS levels were significantly higher than the other groups. 
These results showed that E significantly induced oxidative 
stress. 

Death from E consumption is possible when blood alcohol 
level reaches 0.4%. A blood level of 0.5% or more is commonly 

Oedema and congestion: None: 0, Minimal: 1, Moderate: 2, 
Severe: 3

Inflammation: Negative: 0, Positive: 1

Degeneration: None: 0, Minimal: 1, Moderate: 2 Severe: 3

Necrosis and necrobiosis: None: 0, Minimal: 1, Moderate: 2, 
Severe: 3

The score results were summarized in Table II.

Neurons were normal in the control group (Figure 4A, B). In the 
ethanol group, there was significant neuronal degeneration 
with the findings of a dark pyknotic nucleus, vacuolation 
and shrunken cytoplasm (Figure 5A), inflammation (Figure 
5B), significant oedema, congestion, degeneration (Figure 
5C) and necrosis (Figure 5D). E+IL group evaluation showed 
that neuronal degeneration was less than the ethanol group 
but there was no statistical significance (p>0.05). In E+CAPE 
(Figure 6) and E+IL+CAPE groups, all of the degeneration 
findings were significantly less than the ethanol group (p<0.05). 

Table I: Comparison of Post-Medication TAS, TOS, and OSi Levels in Brain Tissues

TAS TOS OSi

Control 0.92±0.10 12.05±2.20 13.15±3.00
CAPE 
	 0.51±0.03 9.69±5.46 18.66±10.21

IL 0.85±0.06 12.05±1.64 14.20±2.65

Ethyl Alcohol 0.52±0.18* 15.84±1.73* 32.92±10.93*

Ethyl Alcohol+CAPE 0.86±0.11 13.22±1.82 15.62±4.19

Ethyl Alcohol+IL 0.75±0.07 14.85±1.14 19.82±2.32

Ethyl Alcohol +IL+CAPE 0.90±0.10+ 11.81±0.99+ 13.17±1.99+

Data are presented as mean ± SD.
The mean difference is significant at the level of 0.05 (p<0.05).
*Compared with the Ethyl Alcohol group, the TAS values in the Control, IL, E+CAPE, and E+IL+CAPE groups were significantly higher.
*Compared with the Ethyl Alcohol group, the TOS values in Control, IL, CAPE, and E+IL+CAPE groups were significantly lower.
*Compared with the Ethyl Alcohol group, the OSI values in Control, IL, E+CAPE and E+IL+CAPE groups were significantly lower.
+ Compared with the Ethyl Alcohol+IL+CAPE group, the TAS values in the Ethyl Alcohol and CAPE groups were significantly lower.
+ Compared with the Ethyl Alcohol+IL+CAPE group, the TOS values in the Ethyl Alcohol and E+IL groups were significantly higher.
+ Compared with the Ethyl Alcohol+IL+CAPE group, the OSI values in the Ethyl Alcohol group was significantly higher.
Ethyl Alcohol (E), IL (Intralipid), CAPE (Caffeic acid phenethyl ester).

Table II: Score Results of Degeneration Findings 

Groups Total Score / 69

1. Control group 6/69

2. ETHANOL 37/69

3. CAPE 9/69

4. IL 11/69

5. E+CAPE 17/69

6. E+IL 32/69

7. E+CAPE+IL 21/69
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Figure 5: Histologic examination of Ethanol group; A) there was significant neuronal degeneration with the findings of dark pyknotic 
nucleus, vacuolation and shrunken cytoplasm, B) significant inflammation, C) significant oedema, congestion and degeneration and         
D) necrosis (HE, X200).

A

c

b

d

Figure 4: Normal brain (A) and cerebellum (B) tissue of rat (HE, X100).

A b
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fatal. Levels of even less than 0.1% can cause intoxication, 
with unconsciousness often occurring at 0.3–0.4% (29). 
Neurotrophic factors, particularly neurotrophins, play a vital 
role in neuronal survival and maturation, and are important 
in regulating naturally occurring cell death through apoptotic 
mechanisms. Reduced levels of these trophic factors or 
deprivation of trophic-like effects from glial cells can induce 
alterations in the pattern of neuronal synaptic connections 
or cause cell death. Recent studies suggest that chronic 
exposure to ethanol can reduce the availability of brain-
derived neurotrophic factor and alter its receptor function (7).

Using transcranial magnetic stimulation, Ravaglia et al. (24) 
showed that chronic alcoholics had a significant prolongation 
of central motor conduction time compared with controls, but 
that there was no correlation between intensity and duration 
of abuse. Volumetric magnetic resonance imaging (MRI) 
analysis revealed thalamic and mammillary body atrophy with 
relative sparing of medial temporal lobe structures. However, Figure 6: E+IL+CAPE group; all of the degeneration findings were 

significantly fewer than ethanol group (HE, X200).

Figure 7: Immunohistochemical evaluation; A) Normal brain tissue of the rat, B) Ethanol group revealed that there is significant apoptosis, 
C,D) E+CAPE+IL group showed mild apoptosis (IHC X200).
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c

b

d
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approach for the treatment of neurotoxicity and oxidative 
stress induced by ethanol in clinic.
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